Measuring the Wavelength of Noisy Sources using the OMM-6810B Optical Multimeter

This Technical Note presents the experimental results showing the effect of source noise on wavelength measurements using the new and improved OMM-6810B Optical Multimeter.

MEASUREMENT SETUP

The measurement setup is shown in Figure 1. A GPIB controlled function generator was coupled to an Electrical WaveHead Emulator to emulate a noisy light source. This emulator, which is coupled to the GPIB controlled OMM-6810B, performs similarly the optical heads which measure wavelength.

The function generator was set up to provide a DC signal that is modulated with a sine wave. The depth of modulation was set at 50%, 25% and 10%. For each of these settings, the computer took 100 wavelength readings over a 20 second period. The maximum change in the wavelength reading was determined and recorded for this period.

Figure 1. Measurement Setup.

RESULTS

As shown in Graphs 1, 2 and 3, the OMM-6810B reading may be adversely affected by low frequency noise components in the source being measured. The

stability of the OMM-6810B reading is determined by the amplitude and frequency of the source noise components as well as the 6810B update rate.

Graph 3. Stability of 6810B reading with depth of modulation at 10%.

800

International inquiries call: 406-586-1244

#TN6810B-4