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This accelerated aging test was performed on telecommunications grade 1310 nm edge emitting laser 
diodes. 
 
1. OBJECTIVE 
 
Determine the median time to failure at 85°C. 
 
2. DEVICES TESTED 
 
This test was performed on a batch of 18 1310nm edge emitting laser diodes.  
 
3. TEST SETUP 
 
Tests were conducted in an ILX Lightwave LRS-9424 Laser Reliability and Burn-In Test system.  
Devices were mounted in a standard 32 device fixture with an external InGaAs photodiode array 
calibrated for 5mW full scale range. 
 
The devices under test were subjected to two sequential 500 hour accelerated aging tests, the first at 
60°C and the second at 85°C. Both tests were conducted in constant power (APC) mode at the laser 
diodes optical output power of 5 mW.   
 
Pre and post LIVs data were collected at 40°C in order to identify any unusual device characteristics.  
 
Control Mode: APC mode at 5mW optical output power.   
 
Data Sampling: 30 minutes 
Data Averaging: 30 minutes 

 
Temperature: 60°C, 85°C 
Aging Time: 500 hours, each test 
 
Ongoing test results were reviewed periodically during the course of the test.  No unusual behavior was 
observed. 
 
 
4. DATA ANALYSIS 
 
4.1 Pre and Post Burn-In LIV Results 

 
Pre and post burn-in LIV tests at 40°C produced typical, well behaved parametric curves for output 
optical power and voltage vs laser drive current. These LIV tests were performed before and after the 
85°C burn-in. The results of these tests are shown in Figures 1 and 2 below. 
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Note that the lifetime at which cumulative failures reach 50% is also referred to as the median life or 
MTTF.  The upper and lower bounds reported above correspond to 90% confidence bounds based on 
the number of samples in this test.  The lognormal probability plot for the lasers in this test is shown in 
Figure 4 below. 
 

 
 

Figure 4  Lognormal Probability Plot of Lifetime Data 
 
The lifetimes reported above correspond to a case temperature of 85°C.  Longer lifetimes can be 
achieved by lowering the operating case temperature of the lasers or designing drive circuitry that can 
accommodate a larger increase in current than the 20% increase that was used to define end-of-life in 
this analysis. 
 
Estimation of lifetime at other operating case temperatures can be accomplished by using the Arrenhius 
equation (see for example the NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/, June 2005).  Use of the Arrhenius equation requires a value for 
the activation energy for the failure mechanism of the lasers.  The value of the activation energy may be 
estimated by collecting and analyzing aging data at two or more temperatures. 
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Figure 1 - Pre Burn-In LIV Test Results 
 
 
 

 
 

Figure 2 - Post Burn-In LIV Test Results 
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4.2 Accelerated Aging Test Results 
 
In this APC mode test the light output of each laser is held at a constant 5mW by increasing the laser 
diode drive current (Iop) as the device ages.  Initial drive currents to achieve 5 mW output ranged from 
approximately 29.2 mA to 38.2 mA as shown in Figure 3 below. No random (sudden) failures were 
observed during the test. 
 

 
 

Figure 3 - Aging Trend 
 

This first 500 hour test was performed at 60°C. The devices showed very little aging at this temperature 
during the short, 500 hour duration of the test. The second 500 hour test was performed at 85°C and a 
higher rate of aging was observed. 

 
 

- 4 - 

 
In order to estimate lifetimes it is necessary to establish a definition of end-of-life. For this analysis we 
have defined end-of-life as a 20% rise in laser diode drive current (Iop) over the initial value. Using this 
definition the aging trend for each laser was extrapolated to end-of-life. The following table provides a 
summary of the aging rates and estimated lifetimes based on this analysis. 
 

Device 
# 

Aging Rate 
(%/KHr) 

Lifetime 
(Hrs) 

1 0.7 27,297 
2 0.6 31,175 
3 0.4 50,173 
4 1.0 19,664 
5 0.2 82,536 
6 0.5 42,217 
7 0.5 42,127 
8 0.2 84,331 
9 1.4 14,124 
10 0.6 35,920 
11 0.8 26,477 
12 0.7 30,346 
13 0.6 34,668 
14 0.8 25,100 
15 0.5 41,239 
16 1.3 14,974 
17 0.2 88,922 
18 0.4 48,815 

 
 
5. LIFETIME ANALYSIS 
 
The lifetimes reported above have a lognormal probability distribution as is typical for most laser diodes 
exhibiting a wear out failure mode.  Results of the reliability analysis based on the lifetime data is 
provided in the table below: 
 

Lifetime Results 

 Lifetime 
(Hrs) 

Upper Bound 
(Hrs) 

Lower Bound 
(Hrs) 

50% Cumulative Failures 35,900 44,600 28,900 

2% Cumulative Failures 11,500 17,300 7,602 
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Figure 1 - Pre Burn-In LIV Test Results 
 
 
 

 
 

Figure 2 - Post Burn-In LIV Test Results 
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