


## STRUCTURAL ENGINEERING REPORT

**Project:** Seismic Restraint for Optical Table

**Location:** Ss=2.50, S1=1.00

Client: MKS Instruments, Inc.

**Code:** 2019 CBC, 2018 IBC

**SGE Job No.** 520.043.139



connect@sgeconsulting.com sgeconsulting.com | (949) 552-5244 **Date:** May 5, 2020

**To:** Mr. Warren Booth

Senior Product Manager MKS Instruments, Inc. 1791 Deere Avenue Irvine, CA 92606 Tel (949) 253-1866

Re: Structural Analysis and Design for

Optical Table Earthquake Restraint

**SGE No.:** 520.043.139

Dear Mr. Booth,

S. Gordin Structural Design & Engineering Services, Inc. (further referred to as "SGE") completed the engineering work on Structural Analysis and Design for the Earthquake Restraint.

This work was conducted based on MKS Instruments, Inc. PO # 1772657 dated April 20, 2020.

Please refer to the aforementioned approved proposal for all additional information, including the caveat and limitations.

#### 1. EXISTING DOCUMENTATION

This proposal was developed upon the following documentation (ERS97):

1.1 Drawings by MKS Instruments, Inc.:

| 34773K | 35712A | 35718A |
|--------|--------|--------|
| 35703A | 35715A | 37192C |
| 35704B | 35716A | 37194B |
| 35711A | 35717A | 37195C |
|        |        | 37255B |

1.2 2015 Structural Engineering Report by SGE on Seismic Restraint for Optical Table (SGE Job No. 515.052.369).

#### 3. STRUCTURAL ANALYSIS BY SGE

3.1 The structural analysis by SGE was based on the following:



SGE No. 520.043.139

3.1.1. Governing design codes:

2018 International Building Code (IBC)

2019 California Building Code (CBC)

ASCE 7-16 (American Society of Civil Engineers)

ACI 318-14 (American Concrete Institute)

Steel Construction Manual 15<sup>th</sup> Edition (American Institute of Steel Construction)

AWS D1.3-08 Structural Welding Code – Sheet Steel (American Welding Society).

3.1.2 Design assumptions:

Light-gage (13ga) steel ASTM A570 Grade 50

Structural steel ASTM A36

Concrete Normal weight concrete, 3,000 PSI strength in

28 days (minimum for California), 6" minimum

uniform thickness

Tributary seismic mass Per Item 3.2.1 below

Seismic force Ss=2.50, S1=1.00

ap=1.0; Rp=2.50; Ω=2 (Lab Equipment, ASCE

7-16 Table.13.5-1)

Table location At the ground floor, mid-height floor, and top

floor (roof)

Table configuration 4'x6' and 4'x20' (4 isolators, 3 restraints)

4'x20' (4 isolators, 4 restraints)

Restraint height 29-1/2" maximum from the floor.

- 3.1.3 Per request from MKS Instruments, Inc., only sleeve-type anchors were considered for the design of anchorage to concrete.
- 3.2 Commentary on some structural design issues (refer to drawings SD1 and SD2, Appendix A).
  - 3.2.1. <u>Model.</u> The following was assumed for the purposes of this analysis/report:
    - a. The considered layouts are limited to the three cases presented on drawing SD1.
    - b. The combined center of gravity of the table and equipment is located within the height and plan limitations outlined by shaded diamond-shaped areas on drawing SD1.
    - c. Any conditions differing from those reflected on drawing SD1 are subject to additional structural investigation.



SGE No. 520.043.139

- d. All tables are supported by vibration isolators (further referred to as "isolators," 4 per table) and earthquake restraints (or "towers," 3 or 4 per table). The isolators are assumed to resist vertical downward forces (gravity and seismic) only, while the restrains are capable of resisting only lateral and upward seismic forces.
- e. Due to the deformability of the table and connections, the lateral forces on the table were assumed to be resisted by all available restraints.
- f. This analysis considered only the resistance of the towers to the seismic forces specified in this report.
- g. For the purposes of this analysis, the isolators were assumed as adequate for the resistance to all applicable (vertical/downward) forces at any possible location of the weight resultant force. The analysis of the isolators is beyond the scope of work by SGE.
- 3.2.2. <u>Codes.</u> The codes per Item 3.1.1 represent the basis for structural design as mandated by the IBC and CBC.

The seismic design basis (Ss=2.50, S1=1.00) was chosen by SGE and approved by MKS Instruments, Inc. to provide seismic forces that are conservative for most of California as well as for most of the continental United States.

- 3.2.3. <u>Anchors.</u> The seismic restraints experience lateral and vertical (upward only) earthquake forces due to table shifting and overturning (refer to drawings SD1 and SD2). As a result, the concrete anchors in the SGE design are subjected to pullout and shear forces. The tension forces were assumed to be resisted only by anchors along one of the tower faces, while the shear forces were assumed to be resisted by the rest of the anchors.
- 3.2.4. <u>Light-Gage Steel.</u> The performance of the light-gage steel components under the compression loads (for example, the faces of the 13-gage tower) is addressed in AISC Steel Design Manual. According to that code, only a certain portion of the compressed light-gage component may be considered effective in compressive resistance.
- 3.2.5. <u>Welding.</u> (1) Similarly to Item 3.2.4, welding of the tower to much thicker structural steel plates is only effective within the aforementioned effective portions of the tower perimeter. For example, for the 13 gage Grade 50 steel, only 3.82" of the 4"-to-10.5" of the tower face width is effective in compression.





- (2) The centerlines of the holes for concrete anchors in the bottom plate (baseplate) are located at a distance of 0.75" from the tower. The effective length of the weld at each anchor is limited to the distance equal to 2x0.75"=1.5" which less than the spacing of the anchors.
- (3) Welders of the light-gage tower shall be specially certified per AWS D1.3.
- 3.2.6. <u>Constructability.</u> Due to different tolerances for steel and concrete construction, the baseplate holes for steel-to-concrete connections have diameters that are larger than those for steel-to-steel connections.
- 3.3 The structural analysis by SGE revealed the following (refer to Appendix A).
  - 3.3.1 The seismic restraint configured per Item 3.2.1 above and drawings SD1 and SD2 is generally adequate for the codes, loads, and assumptions per Item 3.1.2 above.
  - 3.3.2 The resistance of the earthquake assembly appears to be limited by the strength of the anchorage to concrete.
    - The restraints are anchored to the floor (3,000 PSI minimum 28-day strength, normal weight concrete, minimum uniform thickness 6") with HILTI HIT HY200 per ICC ESR 3187 ( $\emptyset$ 0.375" bolts,  $\emptyset$ 0.65" HIS-N inserts minimum embedment 4.38 inches.
  - 3.3.3 Based on the capacity of the assembly, the maximum combined weight of the table and equipment per table shall be evaluated by the following formula:

#### W0 = 3,340\*NR\*KX\*KZ\*KH\*KF [LBS]

- **W0** total maximum combined weight, lbs, of the table **and** of the payload secured on the table;
- **NR** number of restraints per table (**3 or 4**);
- **KX** coefficient for eccentric location of the resultant of the total table and payload weight along 6' or 20' table dimension;
- **KZ** coefficient for eccentric location of the resultant of the total table and payload weight along 4' table dimension;
- KH coefficient for hazardous payload for installations involving quantities of toxic or explosive substances sufficient to be dangerous to the public or exceeding quantities per IBC Table 307.1.(2):



SGE No. 520.043.139

**1.0** for non-hazardous payload

**0.67** for hazardous payload;

**KF** coefficient for table location:

**1.0** ground floor

**0.5** mid-height floor

**0.33** roof.

- 3.3.4 The findings of this report appear applicable for all tables measuring at least 4'x4' and up to 5'x20' with isolator/restraint height of 29 ½" maximum and configurations per Item 3.1.2 above.
- 3.3.5 Installation on floor slabs constructed over the corrugated decks and/or of the light-weight concrete may considerably limit the capacity of the anchors (to be considered on an individual basis).
- 3.3.6 The design earthquake was assumed to be generated by a site with Ss=2.50 and S1=1.00. For some sites, this high value may be too conservative, meaning that the payload on tables at such sites may be increased (to be considered on an individual basis).
- 3.3.7 All individual-basis analyses per, and similar to, Items 3.3.5 and 3.3.6, shall be requested from, and conducted by, MKS Instruments, Inc. and/or SGE.

We appreciate this and any other opportunity to be of service to you. Should you have any questions or need other assistance, please call SGE.

Respectfully submitted.

S. Gordin Structural Design & Engineering Services

Vyacheslav "Steve" Gordin, Phylo


Principal

Registered Structural Engineer

CA License S4311

1 Con

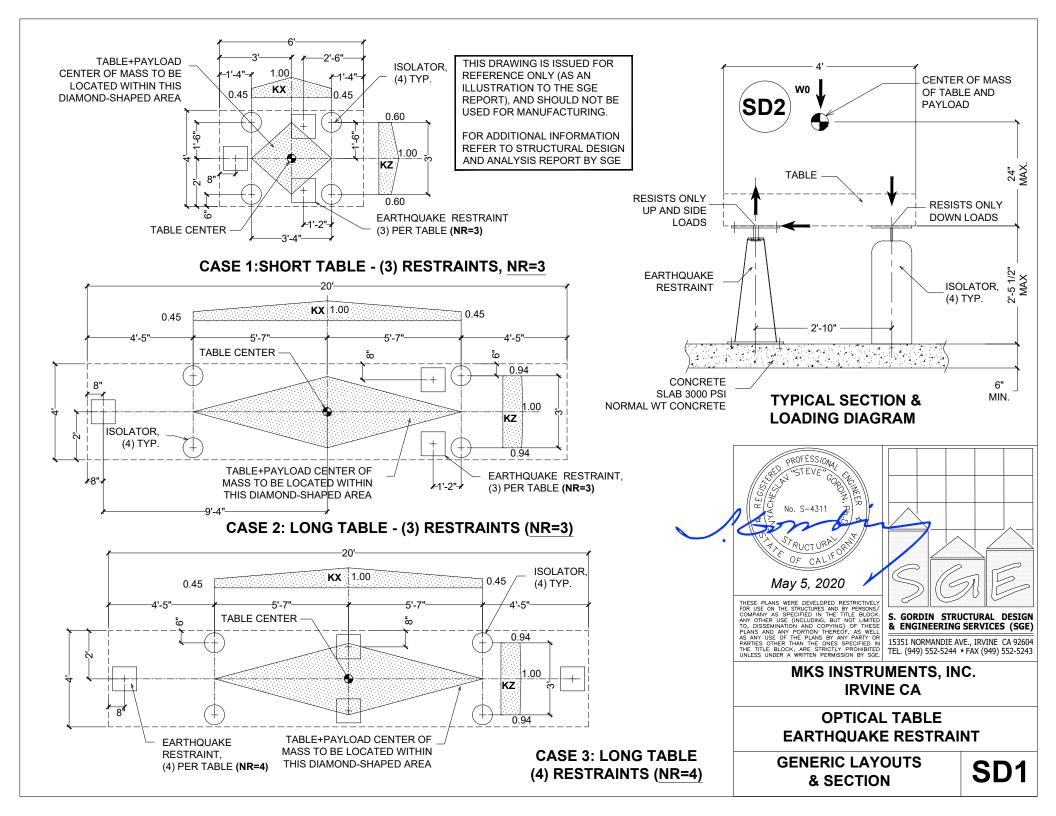
Appendix A: Schematic Drawings
Appendix B: Structural Calculations

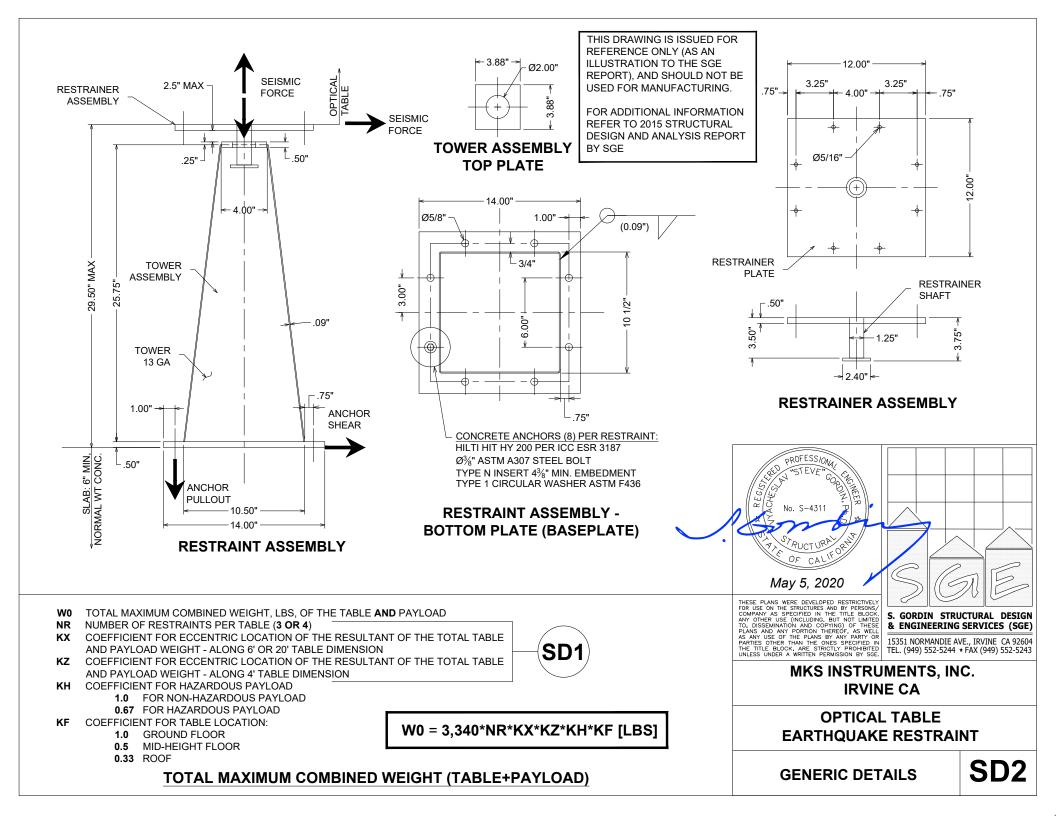


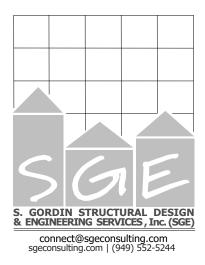
## STRUCTURAL ENGINEERING REPORT

## **APPENDIX A:**

## **SCHEMATIC DRAWINGS**


**Project:** Seismic Restraint for Optical Table


**Location:** Ss=2.50, S1=1.00


Client: MKS Instruments, Inc.

**Code:** 2019 CBC, 2018 IBC

**SGE Job No.** 520.043.139







## STRUCTURAL ENGINEERING REPORT

## **APPENDIX B:**

### STRUCTURAL CALCULATIONS

**Project:** Seismic Restraint for Optical Table

**Location:** Ss=2.50, S1=1.00

Client: MKS Instruments, Inc.

**Code:** 2019 CBC, 2018 IBC

**SGE Job No.** 520.043.139



SGE No. 520.043.139

### **Table of Contents**

| Project information                            | 1  |
|------------------------------------------------|----|
| Design seismic forces                          | 5  |
| Uplift and overturning seismic forces          | 6  |
| Restraint strength based on anchor capacity    | 7  |
| Summary of overturning and shear forces        | 8  |
| Anchorage to concrete design                   | 9  |
| Restraint strength based on tower capacity     | 13 |
| Restraint strength based on weld capacity      | 15 |
| Baseplate and restraining shaft analysis       | 16 |
| Retaining plate analysis                       | 17 |
| Analysis of eccentrically placed seismic force | 18 |

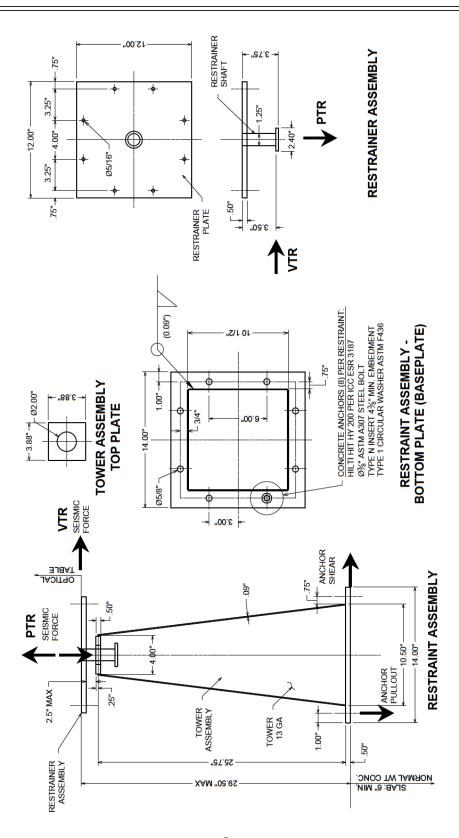


Referenced page number of structural calculations



SG

Structural Calculations
MKS ERS Optical Table Restraint
520.043.139
5/5/20
RW Project: SGE No.: Date: Engineer: Checked by:





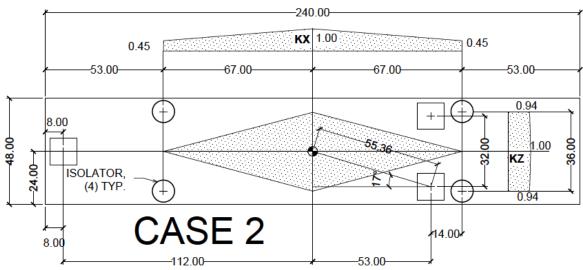


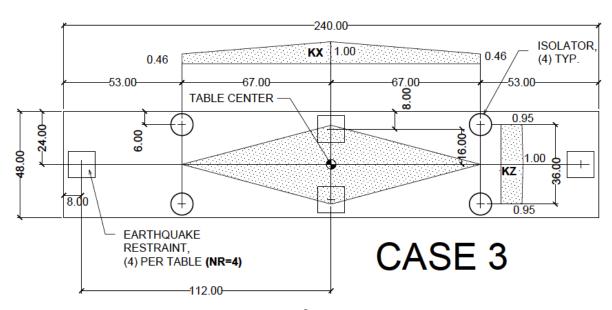

Structural Calculations
MKS ERS Optical Table Restraint
520.043.139
5/5/20
RW
SG

Project: SGE No.: Date: Engineer: Checked by:






Project: MKS ERS Optical Table Restraint


520.043.139 5/5/20

Engineer: RW ecked by: SG











Eq. 11.4-3

MKS ERS Optical Table Restraint Project:

SGE No.: 520.043.139

5/5/20

Date: Engineer:  $\mathsf{RW}$ Checked by: SG

#### **Determine SDS**

Ss = 2.50 g

S1 = 1.00 g

**ASCE 7-16** Assuming site class D, by default: Table 11.4-1

Fa = 1.0Eq. 11.4-1

SMS = (Fa)(Ss) = 2.50 g

SDS = 2/3(SMS) = 1.67 g



Project: SGE No.:

MKS ERS Optical Table Restraint

520.043.139 5/5/20 RW

SG

Date: Engineer:

Checked by:

Section 15.3.1 of ASCE 7-16 -

"for the condition where the weight of the nonbuilding structure is less than 25% of the combined effective seismic weights of the nonbuilding structure and supporting structure, the design seismic forces of the nonbuilding structure shall be determined in accordance with chapter 13 where the values of Rp and Ap shall be determined in accordance with section 13.1.6."

Therefore, the analysis will be conducted per chapter 13 of ASCE 7-16, as for nonstructural component, i.e. "lab equipment" for this project.

#### Seismic Lateral Force on Tributary Weight

FP =

$$\frac{0.4(ap)(SDS)(W0)\left(1+\frac{2Z}{h}\right)}{Rp/Ip}$$



 $VS = FP \times \Omega$ 

$$AP = 1.0$$

$$\Omega = 2$$
 SDS = 1.67 q

VS=K1\*(IP)\*(W0), where K1=

**ASCE 7-16** Table 13.5-1

**ASCE 7-16** §13.3.1.1 Eq. 13.3-1

$$\frac{0.4(ap)(SDS)\left(1+\frac{2Z}{h}\right)(\Omega)}{Rp} = 0.5344 * \left(1+\frac{2Z}{h}\right)$$

Ground floor:  $Z/H = 0 \rightarrow$ 

K1 = 0.5344

Mid height floor:  $Z/H = \frac{1}{2}$ 

K1 = 1.0688

Top floor (roof):  $Z/H = 1 \rightarrow$ 

K1 = 1.6032

#### **Factor KF (Installation Floor)**

KF =1.0  
= 
$$(1+0) / (1+2x\frac{1}{2}) = 0.5$$
  
=  $(1+0) / (1+2x1) = 0.33$ 



Proiect: MKS ERS Optical Table Restraint

520.043.139

5/5/20 RW

Date:

SGE No.:

Engineer: Checked by: SG

#### **Factor KH (Hazardous Condition)**

IP = 1.0 (non-hazardous) or 1.5 (hazardous)

KH = 1/1.0 = 1.0(non-hazardous)

= 1/1.5 = 0.67 (hazardous)

#### Seismic Vertical Force

ΕV  $= \pm 0.2(SDS)(W0)$ 

**ASCE 7-16** 

 $= \pm (0.2)(1.67)(W0) = \pm 0.334(W0) = K2(W0)$ total §13.3.1.2

TVS = EV/NR = (K2)(W0)/NR, where K2 = 0.334 per restraint

#### **Uplift on Restraints Due to Overturning**

Tributary weight to each restraint:

WTR= W0/NR (NR = # of restraints per table)

NR = 3 (Case 1, 2)

= 4 (Case 3)

Lateral seismic force, total:

VS = (K1)(IP)(W0)

Lateral seismic force, tributary to, and applied on top of, each restraint:

VTR=(K1)(IP)(W0)/NR

Additional uplift on anchors from overall overturning of the table:

TOT=(VTR\*H)/(R\*NRT)

Η = 53.5" height of center of mass above floor, TYP

R = 34" design distance between restraints and isolator

NRT = 1#of restraints participating in overturning resistance

TOT = (K1\*IP\*W0\*H)/(NR\*R\*NRT) =

= (K1\*IP\*W0\*53.5) / (NR\*34\*1) = 1.574(K1)(IP)(W0)/NR

= 0.52\*K1\*(IP)\*(W0)Case 1, 2 (NR=3)

= 0.39\*K1\*(IP)\*(W0)Case 3 (NR=4)



MKS ERS Optical Table Restraint

520.043.139

5/5/20 RW SG

Date: Engineer: Checked by:

Project: SGE No.:

Checked by.

Seismic vertical uplift per restraint:

TVS = (K2)(W0)/NR

= 0.111(W0) Case 1, 2 (NR=3)

= 0.083(W0) Case 3 (NR=4)

#### **Restraint Strength Based on Anchor Capacity**

PA = MTR/LE + PTR/N ≤ 8.0 Kips

MTR = VTR\*HR, IN-K moment at bottom of each restraint = V\*HR

= 9.833(K1)(IP)(W0) CASE 1, 2 (NR=3)

= 7.375(K1)(IP)(W0) CASE 3 (NR=4)

PTR = TOT+TVS total uplift on restraint

HR = 29.5" height of restraint

LE = 7.5" effective moment arm for anchors

N = 4 # of anchors per side (in anchor groups)

(2) anchors per side = (1) anchor group

8 Kips LRFD capacity of anchor group in tension

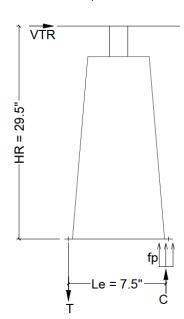
Only (2) anchors out of (8) considered effective for moment resistance.

Shear is resisted by the rest of the anchors (in compression zone).

PA =  $5.25(W0)/7.5 + 0.389(W0)/4 \le 8 \text{ K}$ 

Assuming:

IP = 1 (non-hazardous)


NR = 3

Z/H = 0

Therefore:

W0 ≤ 10.03 K, or

WTRA =  $W0/NR \le 3.34 K$ 



#### **SUMMARY**

| ANALYSIS -<br>CENTERED FORCE | NA=number of anchors in group TA=Total number of anchors WTRA= weight per restraint anchor prespective WTRS=weight per restraint from steel perspective WTRW= weight per restraint from weld perspective W TBL = total max weight of table and load |       |       |       |       |      | TOT=tension from overturning P=Tension from Vertical Seismic and Overturning consideration V=Shear on restraint M=Moment on restraint vw=V(P <sup>2</sup> +V <sup>2</sup> ) weld shear PER RESTRAINT |       |             |           |           |           |       |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-----------|-----------|-----------|-------|
|                              | CASE                                                                                                                                                                                                                                                | IP    | R     | н     | HR    | NR   | K1                                                                                                                                                                                                   | К2    | TOT/(W0*IP) | P/(W0*IP) | V/(W0*IP) | M/(W0*IP) | vw    |
|                              |                                                                                                                                                                                                                                                     | _     | IN    | IN    | IN    |      |                                                                                                                                                                                                      |       | K           | K         | K         | IN-K      | K     |
| GROUND FLOOR                 |                                                                                                                                                                                                                                                     | 1.00  | 34.00 | 53.50 | 29.50 | 3.00 | 0.5344                                                                                                                                                                                               | 0.331 | 0.28        | 0.39      | 0.178     | 5.255     | 0.429 |
| MID-HEIGHT FLOOR             |                                                                                                                                                                                                                                                     | 1.00  | 34.00 | 53.50 | 29.50 | 3.00 | 1.0688                                                                                                                                                                                               | 0.331 | 0.56        | 0.67      | 0.356     | 10.510    | 0.760 |
| TOP FLOOR                    |                                                                                                                                                                                                                                                     | 1.00  | 34.00 | 53.50 | 29.50 | 3.00 | 1.6032                                                                                                                                                                                               | 0.331 | 0.84        | 0.95      | 0.534     | 15.765    | 1.091 |
|                              |                                                                                                                                                                                                                                                     |       |       |       |       |      |                                                                                                                                                                                                      |       | RETAIN      | SHAFT     |           |           |       |
|                              | 1, 2                                                                                                                                                                                                                                                |       |       |       |       |      |                                                                                                                                                                                                      |       | TTR=P       | VTR=V     |           |           |       |
|                              | '                                                                                                                                                                                                                                                   | NA    | TA    | WTRA  | WTRS  | WTRW | WTR (MIN)                                                                                                                                                                                            | W TBL | TTR         | VTR       |           |           |       |
|                              |                                                                                                                                                                                                                                                     |       | K     | K     | K     | K    | K                                                                                                                                                                                                    | K     | K           | K         |           |           |       |
| GROUND FLOOR                 |                                                                                                                                                                                                                                                     | 2.000 | 8.00  | 3.34  | 17.84 | 7.21 | 3.34                                                                                                                                                                                                 | 10.02 | 1.31        | 1.79      |           |           |       |
| MID-HEIGHT FLOOR             |                                                                                                                                                                                                                                                     | 2.000 | 8.00  | 1.70  | 8.92  | 3.68 | 1.70                                                                                                                                                                                                 | 5.10  | 1.14        | 1.82      |           |           |       |
| TOP FLOOR                    |                                                                                                                                                                                                                                                     | 2.000 | 8.00  | 1.14  | 5.95  | 2.47 | 1.14                                                                                                                                                                                                 | 3.42  | 1.08        | 1.83      |           |           |       |
|                              |                                                                                                                                                                                                                                                     |       |       |       |       |      |                                                                                                                                                                                                      |       |             | PER       | RESTRAII  | NT        |       |
|                              | CASE                                                                                                                                                                                                                                                | IP    | R     | Н     | HR    | NR   | K1                                                                                                                                                                                                   | К2    | TOT/(W0*IP) | P/(W0*IP) | V/(W0*IP) | M/(W0*IP) | vw    |
|                              |                                                                                                                                                                                                                                                     |       | IN    | IN    | IN    |      |                                                                                                                                                                                                      |       | K           | K         | K         | IN-K      | K     |
| GROUND FLOOR                 |                                                                                                                                                                                                                                                     | 1.00  | 34.00 | 53.50 | 29.50 | 4.00 | 0.5344                                                                                                                                                                                               | 0.331 | 0.21        | 0.29      | 0.134     | 3.941     | 0.322 |
| MID-HEIGHT FLOOR             |                                                                                                                                                                                                                                                     | 1.00  | 34.00 | 53.50 | 29.50 | 4.00 | 1.0688                                                                                                                                                                                               | 0.331 | 0.42        | 0.50      | 0.267     | 7.882     | 0.570 |
| TOP FLOOR                    |                                                                                                                                                                                                                                                     | 1.00  | 34.00 | 53.50 | 29.50 | 4.00 | 1.6032                                                                                                                                                                                               | 0.331 | 0.63        | 0.71      | 0.401     | 11.824    | 0.818 |
|                              | _                                                                                                                                                                                                                                                   |       |       |       |       |      |                                                                                                                                                                                                      |       | RETAIN      | SHAFT     |           |           |       |
|                              | 3                                                                                                                                                                                                                                                   | NA    | TA    | WTRA  | WTRS  | WTRW | WTR (MIN)                                                                                                                                                                                            | W TBL | TTR         | VTR       |           |           |       |
|                              |                                                                                                                                                                                                                                                     |       | K     | K     | K     | K    | K                                                                                                                                                                                                    | K     | K           | K         |           |           |       |
| GROUND FLOOR                 |                                                                                                                                                                                                                                                     | 2.000 | 8.00  | 3.34  | 17.84 | 7.21 | 3.34                                                                                                                                                                                                 | 13.36 | 0.98        | 1.79      |           |           |       |
| MID-HEIGHT FLOOR             |                                                                                                                                                                                                                                                     | 2.000 | 8.00  | 1.70  | 8.92  | 3.68 | 1.70                                                                                                                                                                                                 | 6.80  | 0.86        | 1.82      |           |           |       |
| TOP FLOOR                    |                                                                                                                                                                                                                                                     | 2.000 | 8.00  | 1.14  | 5.95  | 2.47 | 1.14                                                                                                                                                                                                 | 4.56  | 0.81        | 1.83      |           |           |       |



#### ANCHORAGE TO CONCRETE ~ EPOXY ANCHOR ~ HILTI HIT-HY 200

REFERENCES ACI ACI 318-14 ESR ICC ESR 3187

| DESIGN PARAMETER                       | DESIGN PARAMETER NAME FORMULA OR SWITCH |                              | VALUE                 | UNIT     | ?        | COMMENT        | REFERENCE        |
|----------------------------------------|-----------------------------------------|------------------------------|-----------------------|----------|----------|----------------|------------------|
| FORCES & CONDITIONS                    |                                         |                              |                       |          |          |                |                  |
| FACTORED PULLOUT FORCE                 | Nn1                                     |                              | 8.00                  | K        |          |                |                  |
| FACTORED SHEAR FORCE                   | Vn1                                     |                              | 0.00                  |          |          |                | (7)              |
| OPTIONAL FORCE FACTOR                  | KF                                      |                              | 1.00                  |          |          |                |                  |
| TEMPERATURE (°F) AND TEMPERATURE RANGE | T                                       |                              | 130                   |          |          |                | ESR TBL          |
| DESIGN PULLOUT FORCE                   | Nan                                     | Nn1*KF                       | 8.00                  | K        |          |                |                  |
| DESIGN SHEAR FORCE                     | Vn                                      | Vn1*KF                       | 0.00                  | K        |          | SDC C F        | ACI 17.2.3.4     |
| SEISMIC COEFF (TENSION, CONCRETE ONLY) | ksdc                                    |                              | 0.75                  |          |          | SDC C-F        |                  |
| FACTOR TENSION FORCE BY $\Omega$ Y/N   | Ω                                       | N                            | 1.00                  |          | OK       |                | ACI 17.2.3.4.3 ( |
| FACTOR SHEAR FORCE BY $\Omega$ Y/N     | Ω                                       | N                            | 1.00                  |          | OK       |                |                  |
| CONCRETE STRENGTH (NWC)                | fc                                      |                              | 3,000                 | PSI      |          |                |                  |
| INSTALLATION CONDITION                 |                                         | DRY = "D"; WET/SATURATED="W" | D                     |          |          |                | ACI 17.5.1       |
| GROUT PADS (SHEAR STEEL ONLY)          | kg                                      | N                            | 1.00                  |          |          |                |                  |
| CRACKED CONCRETE Y/N                   |                                         | N                            |                       |          |          |                |                  |
| GEOMETRY                               |                                         |                              |                       |          |          |                |                  |
| # OF ANCHORS IN THE GROUP, EFFECTIVE   |                                         |                              |                       |          |          |                | _                |
| STEEL & CONCRETE, TENSION              | nt                                      | _                            | 2.00                  |          |          | <=4            |                  |
| CONCRETE, SHEAR                        | nv                                      |                              | 2.00                  |          |          |                | ( )              |
| STEEL, SHEAR                           | ns                                      |                              | 2.00                  |          |          |                |                  |
| ALONG LOADED EDGE                      | NALE                                    |                              | 2.00                  |          |          |                |                  |
| DIAMETER                               |                                         |                              |                       |          |          |                |                  |
| ANCHOR                                 | da                                      |                              | 0.375                 | IN       |          |                |                  |
| INSERT                                 | d                                       |                              | 0.650                 | IN       |          |                |                  |
| SPECIFIED STRENGTH OF STEEL            |                                         |                              | 7.                    | 1401     |          | E4554 OD 55 OF | CIM              |
| ANCHOR, TENSILE                        | fut                                     | $\sum$                       | 75                    | KSI      | OK       | F1554 GR 55 OF | SOUVI            |
| ANCHOR, YIELD                          | fy                                      | 1621 1 Sx , 622 1            | 55                    | KSI      | OK       |                |                  |
| fyt<=125,000 PSI; fyt<=1.9fy           | £.4.                                    | 1 1 2 1                      | 105<br>75             |          |          |                |                  |
| INSERT TENSILE                         | futa                                    | EDGE                         |                       | KSI      |          |                |                  |
| INSERT, TENSILE<br>ANCHOR, YIELD       | fut                                     | A DIRECTION                  | 75<br>55              | KSI      |          |                |                  |
| ANCHOR, HELD                           | fy                                      | TOF FORCE CII                | 33                    | NOI      |          |                |                  |
| INSERT/ANCHOR(S) EMBEDMENT, ASSUMED    | hef                                     | as sa                        | 4.33                  | IN       | OK       |                |                  |
| INSERT/ANCHOR EMBEDMENT, MINIMUM       | hef min                                 | fi Sa                        | 2.38                  |          | K        | _              | ESR TBL          |
| PAD THICKNESS, MINIMUM                 | tp*                                     | • • •                        | 5.63                  | IN       | -        | <b>ン</b>       | ESR TBL          |
| PAD THICKNESS, ASSUMED                 | tp                                      | 1 1 1 12                     | 6.00                  | IN       | OK       |                |                  |
| ANCHOR SPACING                         |                                         | EDGE ////                    |                       |          |          |                |                  |
| DIRECTION 1 (MINIMUM)                  | sx                                      | ACROSS SHEAR FORCE           | 6.00                  | IN       |          |                |                  |
| DIRECTION 2 (MAXIMUM)                  | sa                                      | ALONG SHEAR FORCE            | 12.00                 | IN       |          |                |                  |
| ALONG LOADED EDGE                      | SL                                      |                              | 6                     | IN       |          |                | ESR TBL          |
| MIN. ANCHOR SPACING                    | smin                                    |                              | 1.88                  | IN       | OK       |                |                  |
| AVAIL. WIDTH OF HALF-PYRAMID BASE      | wpa                                     | 3hef                         | 12.99<br><b>12.00</b> |          |          |                |                  |
| ANCHOR EDGE DISTANCE                   | r-                                      |                              |                       | -        |          |                |                  |
| DIRECTION 1                            | c11                                     | MIN ALONG SHEAR FORCE        | 12.00                 | INI      | ОК       |                |                  |
| DIRECTION                              | c11                                     | MAX ALONG SHEAR FORCE        | 12.00                 | IN<br>IN | OK       |                |                  |
| DIDECTION 2                            | c12                                     | MIN ACROSS SHEAR FORCE       | 12.00                 |          |          |                |                  |
| DIRECTION 2                            | c21<br>c22                              | MAX ACROSS SHEAR FORCE       |                       | IN       | OK<br>OK |                |                  |
|                                        | 022                                     | 1.5hef                       | 12.00<br>6.50         | IN<br>IN | UK       |                |                  |
| MIN. EDGE DIST                         | cmin                                    | 6*d                          | 1.88                  |          | OK       |                | 17.7.3, 17.7     |
| WIIN. LDGE DIST                        | OHIIII                                  | o u                          | 1.00                  | 111      | OIL      |                | 11.1.5, 11.1     |



|                                                                             |                      | >01E                                          |           |                 |   |                                                |                         |
|-----------------------------------------------------------------------------|----------------------|-----------------------------------------------|-----------|-----------------|---|------------------------------------------------|-------------------------|
| DESIGN PARAMETER                                                            | NAME                 | FORMULA OR SWITCH                             | VALUE     | UNIT            | ? | COMMENT                                        | REFERENCE               |
| STEEL STRENGTH, TENSION                                                     |                      |                                               | ANCHOR    | ₹               |   | INSERT                                         |                         |
| THREADS PER INCH                                                            | ntr                  |                                               | 16.00     |                 |   | 11                                             |                         |
| EFFECTIVE AREA                                                              | Ase=                 | $\pi$ /4(d09743/ntr) <sup>2</sup>             | 0.0775    | $IN^2$          |   | 0.2476                                         |                         |
| NOM. STRENGTH OF ANCHOR GROUP - STEEL                                       | Ns                   | nt*(Ase)futa                                  | 11.62     | K               |   | 37.13                                          |                         |
| STEEL STRENGTH REDUCTION FACTOR                                             | φS                   |                                               | 0.75      |                 |   | 0.75                                           | ACI 17.4.1.2            |
| DESIGN STRENGTH, STEEL                                                      |                      | φ S*Ns                                        | 8.72      | K               |   | 27.85                                          |                         |
|                                                                             | NS1                  |                                               | 8.72      |                 |   |                                                |                         |
|                                                                             | NS2                  | 1.2NS1                                        | 13.95     | K               |   |                                                |                         |
| CONCRETE BREAKOUT STRENGTH, TENSION                                         |                      |                                               |           |                 |   |                                                |                         |
| PROJ. AREA OF TENSION FAILURE SURFACE FOR A                                 | NCHOR GR             | OUP                                           |           |                 |   |                                                |                         |
| nt=1 CLOSE TO EDGE                                                          | AN1c                 | (c11+c12)(c21+c22)                            | -         |                 |   | cij≤1.5hef                                     | ACI 17.4.5.2            |
| nt=1 AWAY FROM EDGE                                                         | AN0                  | 9hef <sup>2</sup>                             | 169       |                 |   | -,                                             |                         |
| nt=2 CLOSE TO EDGE                                                          | AN2c                 | (c11+c12)(c21+sx+c22)                         | -         | IN <sup>2</sup> |   |                                                |                         |
| nt=2 AWAY FROM EDGE                                                         | AN2a                 | , , ,                                         | 247       | 9               |   | cij≤1.5hef,                                    |                         |
| nt=4 CLOSE TO EDGE                                                          | AN4c                 | (c11+sa+c12)(c21+sx+c22)                      | -         | IN <sup>2</sup> |   | si≤3hef                                        |                         |
| nt=4 AWAY FROM EDGE                                                         | AN4a                 | *ANIO                                         | - 227     | IN <sup>2</sup> |   |                                                |                         |
|                                                                             | ANI                  | n*AN0<br><=n*AN0                              | 337       | $IN^2$          |   |                                                |                         |
|                                                                             | AN<br>kc             | <=II ANO                                      | 247<br>24 | IIN             |   | UNCRACKED                                      | ESR TBL 12              |
| BASIC BREAKOUT STRENGTH IN CONCRETE                                         | Nb                   | kc*(f'c) <sup>1/2</sup> *(hef) <sup>3/2</sup> | 11.84     | K               |   | UNCKACKED                                      | ACI 17.4.2.2a           |
| ECCENTRICITY OF PULLOUT FORCE                                               | e'N1                 | KC (IC) (HeI)                                 | 0.00      | IN              |   |                                                | ACI 17.4.2.2a           |
| EGGENTINION TO T GEEGGT TONGE                                               | e'N2                 |                                               | 0.00      | IN              |   |                                                |                         |
| MODIFICATION FACTOR FOR ECCENTRICITY                                        | Ψ11                  | [1+2e'N/(3hef)] <sup>-1</sup>                 | 1.00      |                 |   |                                                | ACI 17.4.2.4            |
|                                                                             | Ψ12                  | [1+2e'N/(3hef)] <sup>-1</sup>                 | 1.00      |                 |   |                                                |                         |
|                                                                             | $\Psi 1$             | Ψ11*Ψ12                                       | 1.00      |                 |   |                                                |                         |
| MODIFICATION FACTOR FOR EDGE EFFECT                                         |                      |                                               | 1.00      |                 |   | c1>=1.5hef                                     | ACI 17.4.2.5a           |
|                                                                             |                      |                                               | -         |                 |   | c1<1.5hef                                      | ACI 17.4.2.5b           |
|                                                                             | Ψ2                   |                                               | 1.00      |                 |   |                                                |                         |
| MODIF FACTOR FOR CRACKED TENSION ZONE<br>NOMINAL CONCRETE BREAKOUT STRENGTH | Ψ3                   | IF $(f_t < f_r) = 1.25, 1.00$                 | 1.25      |                 | N | O TENSION CRACKS                               |                         |
| FOR SINGLE ANCHOR                                                           | Ncb                  | $dN(E\Psi)(S\Psi)$                            | 14.81     | K               |   |                                                | ACI 17.4.2.1a           |
| FOR GROUP OF ANCHORS                                                        | Ncbg                 | $(AN/AN0)$ $(\Psi1)$ $(\Psi2)$ $(\Psi3)$ Nb   | 21.67     |                 |   |                                                | ACI 17.4.2.1b           |
| STRENGTH REDUCTION FACTOR                                                   | φ C1                 | DUCTILE FAILURE                               | 0.75      |                 |   |                                                | ACI 17.3.3(b)           |
| DESIGN BREAKOUT STRENGTH                                                    |                      | φ C1*Ncbg                                     | 16.25     | K               |   |                                                |                         |
| CONCRETE PULLOUT STRENGTH, TENSION                                          |                      |                                               |           |                 |   |                                                |                         |
| MIN. EMBEDMENT                                                              | hefm                 |                                               | 3         | IN              |   |                                                | ESR TBL 12              |
| MINIMUM SPACING                                                             | smin                 |                                               | 1.88      | IN              |   |                                                | ESR TBL 12              |
| BOND STRENGTH IN CONCRETE                                                   |                      |                                               |           |                 |   |                                                |                         |
| FACTOR FOR f'c>2500 PSI                                                     | kfc                  |                                               | 1.02      |                 |   |                                                | ESR TBL 14 <sup>2</sup> |
| UNCRACKED                                                                   | au                   |                                               | 2,261     |                 |   |                                                | ESR TBL 14              |
| CRACKED (IF APPLICABLE)                                                     | <i>τ1</i>            | 0.4.0 = 1.11.5                                | 2,261     | PSI             |   | UNCRACKED                                      | ESR TBL 14              |
|                                                                             | kcc                  | 3.1-0.7h/hef, h/hef<=2.4                      | 2.13      |                 |   |                                                | ESR 4.1.10.2            |
| CRITICAL EDGE DISTANCE                                                      | cac                  | hef*( 71/1,160)0.4*kcc                        | 12.04     | IN              |   |                                                | ESR 4.1.10.2            |
| ***************************************                                     | cna                  | 10da*( 7 uncr/1,100) <sup>0.5</sup>           | 9.23      |                 |   |                                                | ACI 17.4.5.1d           |
|                                                                             | cc1                  | MIN(cac, cna)                                 | 9.23      |                 |   |                                                |                         |
| MODIFICATION FACTORS FOR:                                                   |                      | ,                                             |           |                 |   |                                                |                         |
| POST INSTALLED ANCHORS                                                      | $\Psi_{	ext{CPNA}}$  |                                               | 1.00      |                 |   | cmin≥cc1                                       | ACI 17.4.5.5a           |
|                                                                             |                      | cmin/cc1                                      | -         |                 |   | cmin <cc1< td=""><td>ACI 17.4.5.5b</td></cc1<> | ACI 17.4.5.5b           |
| EDGE EFFECTS                                                                | $\Psi_{\text{EDNA}}$ |                                               | 1         |                 |   | cmin≥cc1                                       | ACI 17.4.5.4a           |
|                                                                             |                      | 0.7+0.3*cmin/cc1                              | N/A       |                 |   | cmin <cc1< td=""><td>ACI 17.4.5.4b</td></cc1<> | ACI 17.4.5.4b           |
| FOR ECCENTRICITY                                                            | $\Psi_{\text{ECNA}}$ |                                               | 1.00      |                 |   | NO ECCENTRICITY                                | ACI 17.4.5.3            |
| STRENGTH REDUCTION FACTORS:<br>FOR BOND IN SEIS. CATEGORIES C-F             | $\alpha_{NS}$        |                                               | 0.88      |                 |   |                                                | ESR TBL 14              |
| TOTABONE IN OLIO. OATEOONIES OF                                             | ~ N2                 |                                               | 0.50      |                 |   |                                                | LOIK IDE 14             |
|                                                                             |                      |                                               |           |                 |   |                                                |                         |

0.65

ESR TBL 14

STRENGTH REDUCTION FACTOR  $\phi$  1



| DESIGN PARAMETER                                                      | NAME                 | FORMULA OR SWITCH                                                                                                  | VALUE                 | UNIT                               | ?  | COMMENT                                                                        | REFERENCE                     |
|-----------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|----|--------------------------------------------------------------------------------|-------------------------------|
| PROJ. AREA OF PULLOUT FAILURE SURFACE FOR AI                          | NCHOR GR             | POUR                                                                                                               |                       |                                    |    | PULL                                                                           | OUT, CONTINUED                |
| PROJ. AREA OF POLLOUT PAILURE SURFACE FOR AI                          | VCHOR GE             | <del>ROUP</del>                                                                                                    |                       |                                    |    |                                                                                |                               |
| nt=1 CLOSE TO EDGE<br>nt=1 AWAY FROM EDGE                             | AN1c 1<br>AN0 1      | (c11+c12)(c21+c22)                                                                                                 | -<br>341              |                                    |    | c1 <cc1<br>c1&gt;cc1</cc1<br>                                                  | ACI 17.4.5.1                  |
| nt=2 CLOSE TO EDGE                                                    |                      | (2*cac) <sup>2</sup><br>(c11+sx+c12)(c21+c22)                                                                      | 452                   | _                                  |    | c1 <cc1; sx<2cc1<="" td=""><td></td></cc1;>                                    |                               |
| nt=2 AWAY FROM EDGE                                                   |                      |                                                                                                                    | -                     | IN <sup>2</sup>                    |    | c1>cc1; sx<2cc1                                                                |                               |
| nt=4 CLOSE TO EDGE                                                    |                      | (c11+sx+c12)(c21+sa+c22)                                                                                           | -                     | IN <sup>2</sup>                    |    | c1 <cc1; c2<cc1;<br="">sx&lt;2cc1; sa&lt;2cc1<br/>c1&gt;cc1; c2&gt;cc1;</cc1;> |                               |
| nt=4 AWAY FROM EDGE                                                   | AN4a 1               |                                                                                                                    | -                     | IN <sup>2</sup>                    |    | sx<2cc1; sa<2cc1                                                               |                               |
|                                                                       | AN 1                 | n*AN0<br><=n*AN0 1                                                                                                 | 682<br><b>452</b>     | IN <sup>2</sup><br>IN <sup>2</sup> |    |                                                                                |                               |
|                                                                       | Na0                  | $	au$ 1* $\pi$ *d*hef* $lpha_{ m NS}$                                                                              | 17.6                  | K                                  |    |                                                                                | ACI 17.4.5.2                  |
| NOMINAL STATIC PULLOUT (BOND) STRENGTH                                |                      |                                                                                                                    |                       |                                    |    |                                                                                |                               |
| FOR SINGLE ANCHOR                                                     | Na                   | $(AN1/AN01)^* \Psi_{EDNA}^* \Psi_{CPNA}^* Na0$                                                                     | 17.6                  | K                                  |    |                                                                                | ACI 17.4.5.1a                 |
| FOR GROUP OF ANCHORS DESIGN PULLOUT STRENGTH                          | Ncbg                 | (AN1/AN01)* $\Psi_{\text{EDNA}}$ * $\Psi_{\text{ECNA}}$ * $\Psi_{\text{CPNA}}$ *Na0 $\phi$ <b>1</b> * <b>Ncb</b> g | 23.3<br>15.2          | K<br>K                             |    |                                                                                | ACI 17.4.5.1b                 |
| ANCHOR GROUP TENSION STRENGTH STEEL Ns                                |                      | , r                                                                                                                | 8.7                   | K                                  |    |                                                                                |                               |
| CONCRETE No                                                           |                      |                                                                                                                    | 15.2                  | K                                  |    |                                                                                |                               |
| DUCTILE STEEL ANCHOR Y/N                                              |                      | Y                                                                                                                  |                       |                                    |    |                                                                                |                               |
| STEEL STRENGTH GOVERNS Y/N<br>CONSERV., NO SUPPL REINF. , COND B, Y/N |                      | Y<br>Y                                                                                                             |                       |                                    |    |                                                                                |                               |
| FACT'D TENSILE STRENGTH, ANCHOR GROUP                                 |                      | MIN(Ns, Nc*ksds)                                                                                                   | 8.72                  | К                                  | ок |                                                                                |                               |
| SHEAR                                                                 |                      |                                                                                                                    |                       |                                    |    |                                                                                |                               |
| STEEL STRENGTH IN SHEAR                                               | Vs                   | ns*kg*n*0.6*Ase*fut                                                                                                | 6.97                  | K                                  |    |                                                                                | ACI 17.5.1.2b                 |
| REDUCTION, SEISMIC SHEAR (STEEL ONLY)                                 | $\alpha_{	t vs}$     |                                                                                                                    | 0.70                  |                                    |    |                                                                                | ESR TBL 11                    |
| STRENGTH REDUCTION FACTOR                                             | Φ2                   |                                                                                                                    | 0.70                  |                                    |    |                                                                                | ESR TBL 11                    |
| CONCRETE BREAKOUT STRENGTH (SHEAR)                                    |                      |                                                                                                                    |                       |                                    |    |                                                                                |                               |
| SHEAR FORCE PARALLEL TO EDGE Y/N                                      | ksd                  | N                                                                                                                  | 1.00                  |                                    |    |                                                                                |                               |
| SHEAR FORCE ECCENTRICITY MODIFICATION FACTORS FOR SHEAR STRENGTH:     | e'V                  | 4                                                                                                                  | 0.00                  |                                    | OK |                                                                                |                               |
| FOR ECCENTRICITY EDGE EFFECTS                                         | $\Psi_{\sf ECV}$     | [1+2*e'v/(3*C1)] <sup>-1</sup> ≤1                                                                                  | 1.00                  |                                    |    | NO ECC<br>ca2/ca1≥1.5                                                          | ACI 17.5.2.5<br>ACI 17.5.2.6a |
| FOR TENSION IN THE ANCHORING ZONE                                     | $\Psi_{\text{EDV}}$  | 0.7+0.3*cmin/cc1                                                                                                   | 0.90                  |                                    |    | ca2/ca1<1.5                                                                    | ACI 17.5.2.6b                 |
| CRACKING IN THE TENSION ZONE                                          |                      | N                                                                                                                  |                       |                                    |    |                                                                                |                               |
| SUPPLEMENTARY REBAR >=#4                                              |                      | Υ                                                                                                                  |                       |                                    |    |                                                                                |                               |
|                                                                       | $\Psi_{\mathrm{cv}}$ |                                                                                                                    | 1.40                  |                                    |    | ha/c1≥1.5                                                                      | ACI 17.5.2.7                  |
|                                                                       | $\Psi_{\text{HV}}$   |                                                                                                                    | 1.73<br>1.73          |                                    |    | ha/c1<1.5                                                                      | ACI 17.5.2.8                  |
| LOAD BEARING ANCHOR LENGTH, SHEAR                                     | Le                   |                                                                                                                    | 4.33                  | IN                                 |    | L<=8d0                                                                         | ACI 17.5.2.2                  |
| PAD THICKNESS                                                         | 1.5c1<br>tp          |                                                                                                                    | 18.00<br>6.00         | IN<br>IN                           |    |                                                                                |                               |
| DEPTH OF SHEAR FAILURE HALF-PYRAMID BASE                              |                      | MIN(1 5c1 tp)                                                                                                      | 6.00                  | IN                                 |    |                                                                                |                               |
|                                                                       | dp                   | MIN(1.5c1,tp)                                                                                                      |                       |                                    |    |                                                                                |                               |
| ANCHOR SPACING ALONG LOADED EDGE                                      | SL<br>cef            |                                                                                                                    | 6.00                  | IN                                 |    |                                                                                |                               |
| EDGE DISTANCE ACROSS SHEAR FORCE                                      | ca                   |                                                                                                                    | 12.00                 | IN                                 |    |                                                                                |                               |
|                                                                       | cd                   | MIN(1.5c1,c21, tp)                                                                                                 | 6.00                  | IN                                 |    |                                                                                |                               |
| BASIC BREAKOUT STRENGTH, SINGLE ANCHOR                                | \ /!                 | $7(\text{Le/d})^{0.2}(\text{d})^{1/2}(\text{fc})^{1/2}(\text{c1})^{1.5}$                                           | 18.78                 | K                                  |    |                                                                                | ACI 17.5.2.2a                 |
|                                                                       | Vb                   | $9(fc)^{1/2}(c1)^{1.5}$                                                                                            | 20.49<br><b>18.78</b> | K<br>K                             |    |                                                                                | ACI 17.5.2.2b                 |
|                                                                       |                      |                                                                                                                    |                       |                                    |    |                                                                                |                               |



| DESIGN PARAMETER                                                      | NAME        | FORMULA OR SWITCH                                                                                              | VALUE                  | UNIT            | ?        | COMMENT       | REFERENCE           |
|-----------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|------------------------|-----------------|----------|---------------|---------------------|
|                                                                       | ,           |                                                                                                                |                        |                 |          | Sł            | HEAR, CONTINUED     |
| WIDTH OF SHEAR FAILURE HALF-PYRAMID BASE                              |             |                                                                                                                |                        |                 |          |               |                     |
| GROUP                                                                 |             | 2*1.5c11+(NALE-1)*SL                                                                                           | 42.00                  | IN              |          |               |                     |
|                                                                       | wp          | c21+1.5c11+(NALE-1)*SL<br>c21+c22+(NALE-1)*SL                                                                  | 36.00<br>30.00         | IN<br>IN        |          |               |                     |
|                                                                       |             | 02110221(NALL-1) GE                                                                                            | 30.00                  | IN              |          |               |                     |
| SINGLE                                                                | wp1         | MIN [3c11,(c21+c22)]                                                                                           | 24.00                  | IN              |          |               |                     |
|                                                                       |             |                                                                                                                |                        |                 |          |               |                     |
| DESIGN WIDTH OF HALF-PYRAMID BASE                                     | wpd         | Choose from (wp,wp1)                                                                                           | 30.00                  | IN              |          |               |                     |
| AREA OF SHEAR FAILURE HALF-PYRAMID BASE                               | ·           |                                                                                                                |                        |                 |          |               |                     |
| SINGLE                                                                |             |                                                                                                                | 144                    | $IN^2$          |          |               |                     |
| ACTUAL                                                                | AV          | dp*wpd                                                                                                         | 180                    | IN <sup>2</sup> |          |               |                     |
| SINGLE, DEEP CONCRETE                                                 | AV0         | 4.5c11 <sup>2</sup>                                                                                            | 648                    | IN <sup>2</sup> |          |               | ACI 17.5.2.1c       |
| NOMINAL CONCRETE BREAKOUT STRENGTH                                    |             |                                                                                                                |                        |                 |          |               |                     |
| ANGUOR CROUD                                                          |             | $AV/AVO(\Psi_{EDV}^*\Psi_{ECV}^*\Psi_{HV})Vb$                                                                  | 9                      | K               |          |               | ACI 17.5.2.1a       |
| ANCHOR GROUP                                                          |             | AV/AV0( $\Psi_{\text{EDV}}^*\Psi_{\text{ECV}}^*\Psi_{\text{HV}}^*\Psi_{\text{HV}}$ )Vb<br>IF MIN(c11,c21,c22>= | <b>43</b><br>tp) -> PR | K<br>YOUT S     | STRE     | NGTH CONTROLS | ACI 17.5.2.1b       |
| CONCRETE PRYOUT STRENGTH IN SHEAR                                     |             |                                                                                                                |                        |                 |          |               | ACI 17.5.3          |
|                                                                       | kcp         |                                                                                                                | 2.00                   |                 |          | hef>=2.5 IN   | ACI 17.5.3.1a       |
| PRYOUT STRENGTH, SINGLE ANCHOR                                        | Vcp         | kcp*Ncb                                                                                                        | 29.61                  | K               |          |               | ACI 17.5.3.1b       |
| PRYOUT STRENGTH, ANCHOR GROUP                                         | Vcpg        | kcp*Ncbg                                                                                                       | 43.34                  | K               |          |               |                     |
| ANCHOR GROUP NOMINAL STRENGTH, SHEAR                                  |             |                                                                                                                |                        |                 |          |               |                     |
| STEEL Vs                                                              |             | <i>Φ2*Vs* α vs</i>                                                                                             | 3.42                   | K               |          |               |                     |
| CONCRETE Vc                                                           |             | <i>φ2*</i> <b>V</b> c                                                                                          | 30.34                  | K               |          | ***           |                     |
| DUCTILE STEEL ANCHOR Y/N                                              |             | Y                                                                                                              |                        |                 |          |               |                     |
| STEEL STRENGTH GOVERNS Y/N<br>CONSERV., NO SUPPL REINF. , COND B, Y/N |             | N<br>Y                                                                                                         |                        |                 |          |               |                     |
| FACTORED SHEAR STRENGTH, GROUP                                        | φ <b>V</b>  | MIN(Ns, Nc)                                                                                                    | 3.42                   | K               | ок       |               |                     |
|                                                                       | STRE        | NGTH DESIGN INTERACTIO                                                                                         | N SUN                  | IMAF            | RY       |               |                     |
|                                                                       |             |                                                                                                                |                        |                 |          |               | ACI 17.6            |
|                                                                       | KN          | Ω* (Nu/FNn)<=1.0                                                                                               | 0.92                   |                 | OK       | 1             | ACI 17.6.1          |
|                                                                       | KV          | $Ω^*$ (Vu/FVn)<=1.0 (KN) <sup>5/3</sup> +(KV) <sup>5/3</sup> ≤1                                                | 0.00                   |                 | OK<br>OK | $\bigvee$     | ACI 17.6.2<br>R17.6 |
|                                                                       |             |                                                                                                                |                        |                 | OK       |               | K17.0               |
| DUCTILITY CHECK                                                       |             | N/A for "x Ω" cases [D 17.2.3.4.3(d)]                                                                          |                        |                 |          |               |                     |
| PER ANCHOR GROUP (na ≥ 1)                                             |             |                                                                                                                |                        |                 |          |               |                     |
| NOMINAL SHEAR STRENGTH, STEEL                                         | VS          |                                                                                                                | 6.97                   | K               |          |               |                     |
| NOMINAL SHEAR STRENGTH, CONCRETE<br>SHEAR DEMAND                      | VC<br>V     |                                                                                                                | 43.34<br>0.00          | K<br>K          |          |               |                     |
|                                                                       | •           |                                                                                                                | 0.00                   |                 |          |               |                     |
| NOMINAL TENSILE STRENGTH                                              | TOLL        |                                                                                                                | 40.05                  | 12              |          |               | 401470040           |
| STEEL<br>CONCRETE, BREAKOUT                                           | TSU<br>TCU1 |                                                                                                                | 13.95<br>21.67         | K<br>K          |          |               | ACI 17.2.3.4.3a     |
| CONCRETE, PULLOUT                                                     | TCU2        |                                                                                                                | 26.49                  | K               |          |               |                     |
| CONCRETE, MIN                                                         | TCU         |                                                                                                                | 21.67                  | K               |          |               |                     |
| TENSILE DEMAND                                                        | Т           |                                                                                                                | 8.00                   | K               |          |               |                     |
|                                                                       |             | UTILIZATION RATIOS                                                                                             |                        |                 |          |               |                     |
| SHEAR, STEEL                                                          | kvs         | V/VS                                                                                                           | 0.000                  |                 |          |               |                     |
| SHEAR, CONCRETE<br>TENSION, STEEL                                     | kvc<br>kts  | V/VC<br>T/TS                                                                                                   | 0.000<br>0.574         |                 |          |               |                     |
| TENSION, CONCRETE                                                     | ktc         | T/TC                                                                                                           | 0.369                  |                 |          |               | ACI R17.2.3.4.3     |
| TOTAL, STEEL                                                          | KS          | kvs+kts                                                                                                        | 0.574                  |                 |          |               |                     |
| TOTAL, CONCRETE                                                       | KC          | kvc+ktc                                                                                                        | 0.369                  |                 |          |               | I                   |
|                                                                       |             |                                                                                                                |                        |                 |          |               |                     |



MKS ERS Optical Table Restraint Project: SGE No.:

Date:

Engineer:

Checked by:

520.043.139

5/5/20 RW SG

### **Restraint Strength Based on Tower Capacity**

By inspection, compression governs over tension.

Effective properties of restraint tower:

$$1.40 * \sqrt{\frac{E}{FY}} = 1.4 * \sqrt{\frac{29000}{50}} = 33.7$$

AISC 360-16 Table B4.1a

AISC 360-16

Eq. C-E7-1

33.7 << 116 → slender element

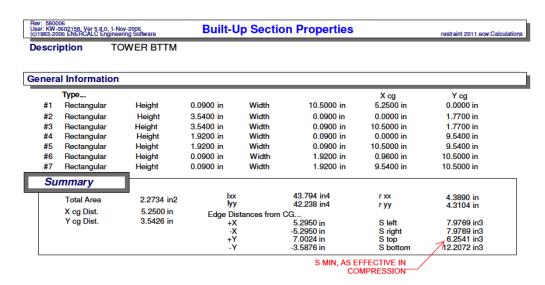
Effective width of compressed flange:

=1.92\*0.09\*24\*[1-(0.38\*24)/116] BE =3.82" <10.5" O.K.

BE/2 = 1.92"






Project: MKS ERS Optical Table Restraint

SGE No.: 520.043.139

5/5/20 RW SG

Date: Engineer: Checked by:

SGE Structural Engineers Irvine CA connect@sgeconsulting.com



13

Steel strength of fully effective portion of tower wall, LRFD

MTR/SEFF ≤ 0.9\*50 KSI = 45 KSI

 $SEFF = 6.25 IN^{3}$ 

For ground floor, Case 1: NR = 3, IP = 1

MTR = 9.833(K1)(IP)(W0) = 6.25\*45 = 281.25 IN-K

W0 = 53.52 K

WTRA = 3.34 K < WTRS = W0/NR = 17.84 K

Anchor-based capacity governs.



Project: MKS ERS Optical Table Restraint

520.043.139 5/5/20

5/5/20 RW SG

SGE No.: Date: Engineer: Checked by:

#### **Restraint Strength Based on Weld Capacity**

Capacity based on overall weld strength, LRFD:

$$AW = 2.27 IN^2$$

$$SW = 6.25 IN^3 (MIN)$$

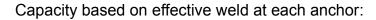
TW = 0.09 IN fillet weld leg & effective throat, light-gage steel

$$\frac{\sqrt{PTR^2 + VTR^2}}{Aw} + \frac{MTR}{Sw} \le 0.75*0.6*70 \text{ KSI}=31.5 \text{ KSI}$$

For ground floor, Case 1 IP=1:

$$NR = 3$$
,  $MTR = 9.833(K1)(IP)(W0)$ 

$$PTR = 0.389(IP)(W0), VTR = 0.5344(IP)*(W0)/NR$$


$$1.03(W0) \le 31.5 \text{ KSI}$$

$$W0 = 30.6 K$$

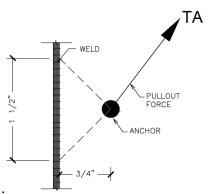
Weight tributary to each per restraint based on weld strength:

WTRW = 
$$W0/NR = 10.2 \text{ K} > WTRA = 3.34 \text{ K}$$

Anchor-based capacity governs.



Effective weld – tension


LW = 
$$2*0.75$$
" = 1.5" per anchor, TW = 0.09"

For tension force, per anchor, case 1, ground floor, IP = 1:

TA = 
$$5.25(W0)/(7.5*N) + 0.389(W0)/(4*N) = 0.399(W0)$$

Fw = 
$$TA/(LW*TW) \le 31.5 KSI$$
,

Anchor-based capacity governs.





Project: N SGE No.:

Date:

Engineer:

Checked by:

MKS ERS Optical Table Restraint

520.043.139 5/5/20

5/5/20 RW SG

#### **Restraint Strength Based On Baseplate Capacity**

Maximum (governing) anchor force:

TA = 8K/2=4K (LRFD)

MPL = 4K\*0.75"=3 IN-K per anchor

ZPL = 1.5"\* $TPL^2/4=0.375TPL^2$ 

fb = MPL/ZPL  $\leq 0.9*36$  KSI

TPL  $\geq$  0.5", ∴½" PLATE O.K.







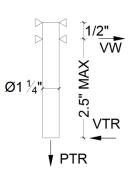
#### **Restraint Strength Based On Retaining Shaft Capacity**

Based on anchor capacity, KH = KF = 1, Case 1, 2 (NR=3), ground floor:

WTR = W0/NR = 3.34K

VTR = K1\*(IP)\*(W0)/NR=0.5344\*(1)\*(3.34) = 1.79 K (LRFD)

PTR = 1.3K


MMAX = 1.79 K \* 3" = 5.4 IN-K

D =1.25" SHAFT DIAMETER

 $Z = 1.25^3/6 = 0.33 \text{ IN}^2 \text{ A} = 1.23 \text{ IN}^2$ 

f =  $5.4 \text{ IN-K/}(0.33 \text{ IN}^3) + 1.3\text{K/}(1.23 \text{ IN}^2) = 17.4 \text{ KSI}$ 

 $<0.9 (36 \text{ KSI}) = 32.4 \text{ KSI} \therefore \text{O.K}$ 



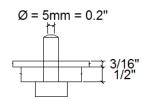
**WELD** 

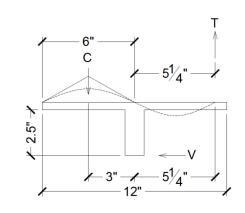
VW = 1.79K\*3"/0.5" = 10.7 K MAX. REACTION AT WELD

AW =  $0.7071 * (1.25"+0.25")*3.14*0.25"=0.83 IN^2$ 

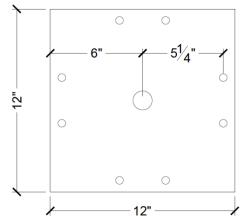
Fw =  $\frac{\sqrt{10.7^2+1.3^2}}{0.833}$  = 12.94 KSI < 31.5 KSI, :: 1/4" WELD OK




Project: MKS ERS Optical Table Restraint SGE No.:


520.043.139

5/5/20 RW SG


Engineer: Checked by:

#### **Retaining Plate Design**





Date:



#### ASD:

= VTR/1.4 = 1.79K/1.4 = 1.27 K

PTR = 1.3K/1.4 = 0.93 K

= 1.27K\* 2.5" /(3" + 5.25") + 0.93K/(4 SIDES) = 0.37K+0.23K=0.6 KΤ

= 33 KSI (assumed) FS

= 0.2" (5mm)DM

= 3T/(3.14\*DM\*FS) = 3\*0.6K/[3.14\*(0.2")\*(33KSI)] = 0.087" < 3/16"L

∴ plate OK

#### Anchor stress

V = 1.27 K/8 = 0.16 K

Т = 0.6K/2 = 0.3 K(2) anchors in tension

Α  $= 0.2^{2*}3.14/4 = 0.03 \text{ IN}^2$ 

= (0.16K + 0.30K)/0.03 = 15.3 KSI - anchors OKf

## ECCENTRIC POSITION OF RESULTANT OF LATERAL FORCE CAUSING TRANSLATION AND ROTATION IN THE PLANE OF THE TABLE

CASE 1
RESTRAINTS EFFECTIVE 3 of 3

| 7        | _ | 7 |
|----------|---|---|
|          | 3 |   |
| <b>L</b> | • |   |
| •        |   | J |
| •        |   |   |

|           | i                                                          |                                                                       |                                | 1                                                               | 2                                                                                                           | 3                                                                                                           | 4 |
|-----------|------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---|
|           | Ai                                                         |                                                                       | IN                             | 28                                                              | 17.09                                                                                                       | 17.09                                                                                                       | 0 |
|           | $\sum Al^2$                                                |                                                                       |                                |                                                                 | 1368                                                                                                        | 3                                                                                                           |   |
|           | EX                                                         |                                                                       | IN                             | 20                                                              | 20                                                                                                          | 20                                                                                                          |   |
|           | L                                                          |                                                                       | IN                             |                                                                 | 6                                                                                                           | 6                                                                                                           |   |
|           | В                                                          | 4.T.4.1.(D.(0.11.)                                                    | IN                             |                                                                 | 32                                                                                                          | 32                                                                                                          |   |
|           | α                                                          | ATAN(B/2/L)                                                           | RAD                            | 0                                                               | 1.212                                                                                                       | 1.212                                                                                                       |   |
|           |                                                            |                                                                       | DEG                            |                                                                 | 69.4                                                                                                        | 69.4                                                                                                        |   |
| EX        | М                                                          | E*(V0=1)                                                              | IN-#                           | 20                                                              | 20                                                                                                          | 20                                                                                                          |   |
|           | RM                                                         | M*Ai/∑Ai                                                              |                                | 0.409                                                           | 0.250                                                                                                       | 0.250                                                                                                       |   |
|           | RMX                                                        | RM*SIN α                                                              |                                | 0.000                                                           | 0.234                                                                                                       | 0.234                                                                                                       |   |
|           | RVX                                                        | 1/3                                                                   |                                | 0.000                                                           | 0.000                                                                                                       | 0.000                                                                                                       |   |
|           | RX                                                         | RMX+RVX                                                               | ш                              | 0.000                                                           | 0.234                                                                                                       | 0.234                                                                                                       |   |
|           | RMZ                                                        | RM*COS α                                                              | #                              | 0.409                                                           | 0.088                                                                                                       | 0.088                                                                                                       |   |
|           | RVZ                                                        | 1/3                                                                   |                                | 0.330                                                           | 0.330                                                                                                       | 0.330                                                                                                       |   |
|           | RZ                                                         | RMZ+RVZ                                                               |                                | 0.739                                                           | 0.418                                                                                                       | 0.418                                                                                                       |   |
|           | R0                                                         | $(RX^2 + RZ^2)^{0.5}$                                                 |                                | 0.739                                                           | 0.479                                                                                                       | 0.479                                                                                                       |   |
|           | KX                                                         | V0/(3*R0)                                                             |                                | 0.45                                                            | 0.69                                                                                                        | 0.69                                                                                                        |   |
|           |                                                            | KX MIN (@ ±EX)                                                        |                                |                                                                 | 0.4                                                                                                         | 5                                                                                                           |   |
|           | i                                                          |                                                                       |                                | 1                                                               | 2                                                                                                           | 3                                                                                                           | 4 |
|           | Ai                                                         |                                                                       | IN                             | 28                                                              | 17.09                                                                                                       | 17.09                                                                                                       | 0 |
|           | $\sum Al^2$                                                |                                                                       |                                |                                                                 | 1368                                                                                                        | 3                                                                                                           |   |
|           | EZ                                                         |                                                                       | INI                            | 4.0                                                             | 18                                                                                                          | 18                                                                                                          |   |
|           |                                                            |                                                                       | IN                             | 18                                                              | 10                                                                                                          | 10                                                                                                          |   |
|           | L                                                          |                                                                       | IN                             | 18                                                              | 6                                                                                                           | 6                                                                                                           |   |
|           | L<br>B                                                     |                                                                       |                                |                                                                 | 6<br>32                                                                                                     | 6<br>32                                                                                                     |   |
|           |                                                            | ATAN(B/2/L)                                                           | IN<br>IN<br>RAD                | 18                                                              | 6<br>32<br>1.212                                                                                            | 6<br>32<br>1.212                                                                                            |   |
|           | В                                                          | ATAN(B/2/L)                                                           | IN<br>IN                       |                                                                 | 6<br>32                                                                                                     | 6<br>32                                                                                                     |   |
| <b>C7</b> | В                                                          | ATAN(B/2/L)<br>E*(V0=1)                                               | IN<br>IN<br>RAD                |                                                                 | 6<br>32<br>1.212                                                                                            | 6<br>32<br>1.212                                                                                            |   |
| EZ        | Вα                                                         |                                                                       | IN<br>IN<br>RAD<br>DEG         | 0                                                               | 6<br>32<br>1.212<br>69.4                                                                                    | 6<br>32<br>1.212<br>69.4                                                                                    |   |
| EZ        | Β<br>α<br>Μ                                                | E*(V0=1)                                                              | IN<br>IN<br>RAD<br>DEG         | 0                                                               | 6<br>32<br>1.212<br>69.4                                                                                    | 6<br>32<br>1.212<br>69.4                                                                                    |   |
| ΕZ        | B<br>α<br>M<br>RM                                          | E*(V0=1)<br>M*Ai/∑Ai                                                  | IN<br>IN<br>RAD<br>DEG         | 0<br>18<br>0.368                                                | 6<br>32<br>1.212<br>69.4<br>18<br>0.225                                                                     | 6<br>32<br>1.212<br>69.4<br>18<br>0.225                                                                     |   |
| EZ        | B<br>α<br>M<br>RM<br>RMX                                   | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α                                      | IN<br>IN<br>RAD<br>DEG<br>IN-# | 0<br>18<br>0.368<br>0.000                                       | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211                                                            | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211                                                            |   |
| EZ        | B<br>α<br>M<br>RM<br>RMX<br>RVX                            | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α<br>1/3                               | IN<br>IN<br>RAD<br>DEG         | 0<br>18<br>0.368<br>0.000<br>0.333                              | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333                                                   | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333                                                   |   |
| EZ        | B<br>α<br>M<br>RM<br>RMX<br>RVX<br>RVX                     | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α<br>1/3<br>RMX+RVX                    | IN<br>IN<br>RAD<br>DEG<br>IN-# | 18<br>0.368<br>0.000<br>0.333<br><b>0.333</b>                   | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333<br><b>0.544</b>                                   | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333<br><b>0.544</b>                                   |   |
| EZ        | B<br>α<br>M<br>RM<br>RMX<br>RVX<br>RVX<br>RX<br>RMZ        | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α<br>1/3<br><b>RMX+RVX</b><br>RM*COS α | IN<br>IN<br>RAD<br>DEG<br>IN-# | 18<br>0.368<br>0.000<br>0.333<br><b>0.333</b>                   | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333<br><b>0.544</b><br>0.079                          | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333<br><b>0.544</b><br>0.079                          |   |
| EZ        | B<br>α<br>M<br>RM<br>RMX<br>RVX<br><b>RX</b><br>RMZ<br>RVZ | E*(V0=1) M*Ai/∑Ai RM*SIN α 1/3 RMX+RVX RM*COS α 1/3                   | IN<br>IN<br>RAD<br>DEG<br>IN-# | 18<br>0.368<br>0.000<br>0.333<br><b>0.333</b><br>0.368<br>0.000 | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333<br><b>0.544</b><br>0.079<br>0.000                 | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333<br><b>0.544</b><br>0.079<br>0.000                 |   |
| EZ        | B<br>α<br>M<br>RM<br>RMX<br>RVX<br>RX<br>RMZ<br>RVZ<br>RVZ | E*(V0=1)  M*Ai/∑Ai  RM*SIN α  1/3  RMX+RVX  RM*COS α  1/3  RMZ+RVZ    | IN<br>IN<br>RAD<br>DEG<br>IN-# | 18<br>0.368<br>0.000<br>0.333<br>0.368<br>0.000<br>0.368        | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333<br><b>0.544</b><br>0.079<br>0.000<br><b>0.079</b> | 6<br>32<br>1.212<br>69.4<br>18<br>0.225<br>0.211<br>0.333<br><b>0.544</b><br>0.079<br>0.000<br><b>0.079</b> |   |

## ECCENTRIC POSITION OF RESULTANT OF LATERAL FORCE CAUSING TRANSLATION AND ROTATION IN THE PLANE OF THE TABLE

3

# CASE 2 RESTRAINTS EFFECTIVE 3 of 3

|    | i                                                                          |                                                                       |                                      | 1                                                                                          | 2                                                                                                                                   | 3                                                                                                                           | 4        |   |
|----|----------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------|---|
|    | Ai                                                                         |                                                                       | IN                                   | 112                                                                                        | 55.36                                                                                                                               | 55.36                                                                                                                       |          | 0 |
|    | ∑Al <sup>2</sup>                                                           |                                                                       |                                      |                                                                                            | 1867                                                                                                                                | 3                                                                                                                           |          |   |
|    | EX                                                                         |                                                                       | IN                                   | 67                                                                                         | 67                                                                                                                                  | 67                                                                                                                          |          |   |
|    | L                                                                          |                                                                       | IN                                   |                                                                                            | 53                                                                                                                                  | 53                                                                                                                          |          |   |
|    | В                                                                          |                                                                       | IN                                   |                                                                                            | 32                                                                                                                                  | 32                                                                                                                          |          |   |
|    | α                                                                          | ATAN(B/2/L)                                                           | RAD                                  | 0                                                                                          | 0.293                                                                                                                               | 0.293                                                                                                                       |          |   |
|    |                                                                            |                                                                       | DEG                                  |                                                                                            | 16.8                                                                                                                                | 16.8                                                                                                                        |          |   |
| ΕV | М                                                                          | E*(V0=1)                                                              | IN-#                                 | 67                                                                                         | 67                                                                                                                                  | 67                                                                                                                          |          |   |
| EX | RM                                                                         | M*Ai/∑Ai                                                              |                                      | 0.402                                                                                      | 0.199                                                                                                                               | 0.199                                                                                                                       |          |   |
|    | RMX                                                                        | RM*SIN α                                                              |                                      | 0.000                                                                                      | 0.057                                                                                                                               | 0.057                                                                                                                       |          |   |
|    | RVX                                                                        | 1/3                                                                   |                                      | 0.000                                                                                      | 0.000                                                                                                                               | 0.000                                                                                                                       |          |   |
|    | RX                                                                         | RMX+RVX                                                               |                                      | 0.000                                                                                      | 0.057                                                                                                                               | 0.057                                                                                                                       |          |   |
|    | RMZ                                                                        | RM*COS α                                                              | #                                    | 0.402                                                                                      | 0.190                                                                                                                               | 0.190                                                                                                                       |          |   |
|    | RVZ                                                                        | 1/3                                                                   |                                      | 0.330                                                                                      | 0.330                                                                                                                               | 0.330                                                                                                                       |          |   |
|    | RZ                                                                         | RMZ+RVZ                                                               |                                      | 0.732                                                                                      | 0.520                                                                                                                               | 0.520                                                                                                                       |          |   |
|    | R0                                                                         | $(RX^2 + RZ^2)^{0.5}$                                                 |                                      | 0.732                                                                                      | 0.523                                                                                                                               | 0.523                                                                                                                       |          |   |
| ſ  | KX                                                                         | V0/(3*R0)                                                             |                                      | 0.45                                                                                       | 0.63                                                                                                                                | 0.63                                                                                                                        |          |   |
|    |                                                                            | KX MIN (@ ±EX)                                                        |                                      |                                                                                            | 0.4                                                                                                                                 | 5                                                                                                                           |          |   |
|    |                                                                            |                                                                       |                                      |                                                                                            |                                                                                                                                     |                                                                                                                             |          |   |
|    | i                                                                          |                                                                       |                                      | 1                                                                                          | 2                                                                                                                                   | 3                                                                                                                           | <u> </u> |   |
|    | i<br>Ai                                                                    |                                                                       | IN                                   | 1 112                                                                                      | 2<br>55.36                                                                                                                          | 3<br>55.36                                                                                                                  | 4        | 0 |
|    | Ai                                                                         |                                                                       | IN                                   | 1 112                                                                                      | 55.36                                                                                                                               | 55.36                                                                                                                       |          | 0 |
|    | Ai<br>∑Al²                                                                 |                                                                       |                                      | 112                                                                                        | 55.36<br>1867                                                                                                                       | 55.36<br>'3                                                                                                                 |          | 0 |
|    | Ai<br>∑Al <sup>2</sup><br>EZ                                               |                                                                       | IN                                   |                                                                                            | 55.36<br>1867<br>18                                                                                                                 | 55.36<br>'3<br>18                                                                                                           |          | 0 |
|    | Ai<br>∑Al²                                                                 |                                                                       |                                      | 112                                                                                        | 55.36<br>1867                                                                                                                       | 55.36<br>'3                                                                                                                 |          | 0 |
|    | Ai<br>∑Al <sup>2</sup><br>EZ<br>L                                          | ATAN(B/2/L)                                                           | IN<br>IN                             | 112                                                                                        | 55.36<br>1867<br>18<br>53                                                                                                           | 55.36<br>3<br>18<br>53                                                                                                      |          | 0 |
|    | Ai<br>ΣAI <sup>2</sup><br>EZ<br>L<br>B                                     | ATAN(B/2/L)                                                           | IN<br>IN<br>IN                       | 112<br>18                                                                                  | 55.36<br>1867<br>18<br>53<br>32                                                                                                     | 55.36<br>'3<br>18<br>53<br>32                                                                                               |          | 0 |
|    | Ai<br>ΣAI <sup>2</sup><br>EZ<br>L<br>B                                     |                                                                       | IN<br>IN<br>IN<br>RAD<br>DEG         | 112<br>18<br>0                                                                             | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8                                                                                    | 55.36<br>73<br>18<br>53<br>32<br>0.293<br>16.8                                                                              |          | 0 |
| EZ | Ai<br>ΣAl <sup>2</sup><br>EZ<br>L<br>B<br>α                                | E*(V0=1)                                                              | IN<br>IN<br>IN<br>RAD                | 112<br>18<br>0<br>18                                                                       | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8                                                                                    | 55.36<br>18<br>53<br>32<br>0.293<br>16.8                                                                                    |          | 0 |
| EZ | Ai<br>ΣAI <sup>2</sup><br>EZ<br>L<br>B<br>α                                | E*(V0=1)<br>M*Ai/∑Ai                                                  | IN<br>IN<br>IN<br>RAD<br>DEG         | 112<br>18<br>0<br>18<br>0.108                                                              | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8                                                                                    | 55.36<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053                                                                     |          | 0 |
| EZ | Ai<br>ΣAI <sup>2</sup><br>EZ<br>L<br>B<br>α<br>M<br>RM<br>RMX              | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α                                      | IN<br>IN<br>IN<br>RAD<br>DEG         | 112<br>18<br>0<br>18<br>0.108<br>0.000                                                     | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015                                                            | 55.36<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015                                                            |          | 0 |
| EZ | Ai<br>ΣAl <sup>2</sup><br>EZ<br>L<br>B<br>α<br>M<br>RM<br>RMX<br>RVX       | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α<br>1/3                               | IN<br>IN<br>IN<br>RAD<br>DEG         | 112<br>18<br>0<br>18<br>0.108<br>0.000<br>0.333                                            | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333                                                   | 55.36<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333                                                   |          | 0 |
| EZ | Ai<br>ΣAI <sup>2</sup><br>EZ<br>L<br>B<br>α<br>M<br>RM<br>RMX              | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α                                      | IN<br>IN<br>IN<br>RAD<br>DEG         | 112<br>18<br>0<br>18<br>0.108<br>0.000                                                     | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333<br><b>0.348</b>                                   | 55.36<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333<br><b>0.348</b>                                   |          | 0 |
| EZ | Ai<br>ΣAI <sup>2</sup><br>EZ<br>L<br>B<br>α<br>M<br>RM<br>RMX<br>RVX<br>RX | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α<br>1/3<br>RMX+RVX                    | IN<br>IN<br>IN<br>RAD<br>DEG<br>IN-# | 112<br>18<br>0<br>18<br>0.108<br>0.000<br>0.333<br><b>0.333</b>                            | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333                                                   | 55.36<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333                                                   |          | 0 |
| EZ | Ai ΣAl² EZ L B α M RM RMX RVX RX RMZ                                       | E*(V0=1)<br>M*Ai/∑Ai<br>RM*SIN α<br>1/3<br><b>RMX+RVX</b><br>RM*COS α | IN<br>IN<br>IN<br>RAD<br>DEG<br>IN-# | 112<br>18<br>0<br>18<br>0.108<br>0.000<br>0.333<br><b>0.333</b><br>0.108                   | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333<br><b>0.348</b><br>0.051                          | 55.36<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333<br><b>0.348</b><br>0.051                          |          | 0 |
| EZ | Ai ΣAI <sup>2</sup> EZ L B α M RM RMX RVX RX RX RNZ RVZ                    | E*(V0=1) M*Ai/∑Ai RM*SIN α 1/3 RMX+RVX RM*COS α 1/3                   | IN<br>IN<br>IN<br>RAD<br>DEG<br>IN-# | 112<br>18<br>0<br>18<br>0.108<br>0.000<br>0.333<br>0.333<br>0.108<br>0.000                 | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333<br><b>0.348</b><br>0.051<br>0.000                 | 55.36<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333<br><b>0.348</b><br>0.051<br>0.000                 |          | 0 |
| EZ | Ai ΣAI <sup>2</sup> EZ L B α M RM RMX RVX RX RMZ RVZ RZ                    | E*(V0=1)  M*Ai/∑Ai  RM*SIN α  1/3  RMX+RVX  RM*COS α  1/3  RMZ+RVZ    | IN<br>IN<br>IN<br>RAD<br>DEG<br>IN-# | 112<br>18<br>0<br>18<br>0.108<br>0.000<br>0.333<br>0.333<br>0.108<br>0.000<br><b>0.108</b> | 55.36<br>1867<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333<br><b>0.348</b><br>0.051<br>0.000<br><b>0.051</b> | 55.36<br>18<br>53<br>32<br>0.293<br>16.8<br>18<br>0.053<br>0.015<br>0.333<br><b>0.348</b><br>0.051<br>0.000<br><b>0.051</b> |          | 0 |

## ECCENTRIC POSITION OF RESULTANT OF LATERAL FORCE CAUSING TRANSLATION AND ROTATION IN THE PLANE OF THE TABLE

CASE 3
RESTRAINTS EFFECTIVE 4 of 4

|   | •   |
|---|-----|
| 3 | - 1 |
| J |     |
|   | J   |

|    | i                |                       |                    | 1     | 2     | 3     | 4     |
|----|------------------|-----------------------|--------------------|-------|-------|-------|-------|
|    | Ai               |                       | IN                 | 112   | 112   | 16    | 16    |
|    | ∑Al <sup>2</sup> |                       |                    |       | 2560  | 0     |       |
|    | EX               |                       | IN                 | 67    | 67    | 67    | 67    |
|    | L                |                       | IN                 |       | 0     | 0     | 0     |
|    | В                |                       | IN                 |       | 32    | 32    | 32    |
|    | α                | ATAN(B/2/L)           | RAD                | 0     | 0.000 | 1.570 | 1.57  |
|    |                  |                       | DEG                |       | 0.0   | 90.0  | 90.0  |
|    | M                | E*(V0=1)              | IN-#               | 67    | 67    | 67    | 67    |
| EX | RM               | M*Ai/∑Ai              | 11N- <del>11</del> | 0.293 | 0.293 | 0.042 | 0.042 |
|    | RMX              | M A/ZA/<br>RM*SIN α   |                    | 0.293 | 0.293 | 0.042 | 0.042 |
|    | RVX              | 1/4                   |                    | 0.000 | 0.000 | 0.000 | 0.042 |
|    | RX               | RMX+RVX               |                    | 0.000 | 0.000 | 0.042 | 0.042 |
|    | RMZ              | RM*COS α              | #                  | 0.293 | 0.293 | 0.000 | 0.000 |
|    | RVZ              | 1/4                   |                    | 0.250 | 0.250 | 0.250 | 0.250 |
|    |                  |                       |                    |       |       |       |       |
|    | RZ               | RMZ+RVZ               |                    | 0.543 | 0.543 | 0.250 | 0.250 |
|    | R0               | $(RX^2 + RZ^2)^{0.5}$ |                    | 0.543 | 0.543 | 0.254 | 0.254 |
|    | KX               | V0/(4*R0)             |                    | 0.46  | 0.46  | 0.99  | 0.99  |
|    |                  | KX MIN (@ ±EX)        |                    |       | 0.40  | 6     |       |
|    |                  |                       |                    | •     |       |       |       |

|    | i              |                       |      | 1     | 2     | 3     | 4     |
|----|----------------|-----------------------|------|-------|-------|-------|-------|
|    | Ai             |                       | IN   | 112   | 112   | 16    | 16    |
|    | $\sum Al^2$    |                       |      | 25600 |       |       |       |
| ΕZ | EZ             |                       | IN   | 18    | 18    | 18    | 18    |
|    | L              |                       | IN   |       | 0     | 0     | 0     |
|    | В              |                       | IN   |       | 32    | 32    | 32    |
|    | α              | ATAN(B/2/L)           | RAD  | 0     | 0.000 | 1.570 | 1.570 |
|    |                |                       | DEG  |       | 0.0   | 90.0  | 90.0  |
|    |                | <b>5</b> + 0 + 0 + 1  |      | 4.0   | 4.0   | 4.0   | 4.0   |
|    | M              | E*(V0=1)              | IN-# | 18    | 18    | 18    | 18    |
|    | RM             | M*Ai/∑Ai              |      | 0.079 | 0.079 | 0.011 | 0.011 |
|    | RMX            | RM*SIN α              |      | 0.000 | 0.000 | 0.011 | 0.011 |
|    | RVX            | 1/4                   |      | 0.250 | 0.250 | 0.250 | 0.250 |
|    | RX             | RMX+RVX               | ,,   | 0.250 | 0.250 | 0.261 | 0.261 |
|    | RMZ            | RM*COS α              | #    | 0.079 | 0.079 | 0.000 | 0.000 |
|    | RVZ            | 1/4                   |      | 0.000 | 0.000 | 0.000 | 0.000 |
|    | RZ             | RMZ+RVZ               |      | 0.079 | 0.079 | 0.000 | 0.000 |
|    | R0             | $(RX^2 + RZ^2)^{0.5}$ |      | 0.262 | 0.262 | 0.261 | 0.261 |
|    | KZ             | V0/(4*R0)             |      | 0.95  | 0.95  | 0.96  | 0.96  |
|    | KZ MIN (@ ±EZ) |                       |      | 0.95  |       |       |       |