ILS SEries
 High-Performance Mid-Range Travel Linear Stages
 OीR2 | Newport"

FEM-optimized Aluminum Body

The optimized aluminum body allows for extreme stiffness and minimizes bi-metal bending without compromising weight. The rigid body reduces deflection under load.

Integrated Encoder

A $4000 \mathrm{pts} / \mathrm{rev}$. encoder is mounted directly on the screw in order to prevent screw/motor coupling errors consequently boosting stage motion accuracy. The HA version features an integrated linear scale with $0.3 \mu \mathrm{~m}$ MIM.

Need Higher Accuracy?
For critical positioning applications, Newport offers micropositioning calibration services. We will create, implement and verify an electronic compensation process to improve the absolute position accuracy of select ILS-HA Series stages when commanded by our XPS advanced motion control system. Compensation is performed at $20.0^{\circ} \mathrm{C}, \pm 0.2^{\circ} \mathrm{C}$, for linear and non-linear errors, ensuring accuracy of up to $1 \mu \mathrm{~m}$ $+1 \mu \mathrm{~m} / 100 \mathrm{~mm}$ over center 80% of travel. A certificate of calibration per Newport Metrology Procedure A167 and measured error maps are provided.

Design Details	
Base Material	Extruded Aluminum
Bearings	Double-row recirculating ball bearinsg
Drive Mechanism	Backlash-free ball screw
Drive Screw Pitch (mm)	2
Feedback	ILS-CC, ILS-CCL, ILS-BPP: Screw mounted rotary encoder, 4,000 cts/rev, index pulse ILS-HA: Linear steel scale, $20 \mu \mathrm{~m}$ signal period, $0.1 \mu \mathrm{~m}$ resolution
Limit Switches	Optical
Origin	Optical, at center of travel, including mechanical zero signal
Cable	3 m long cable include

Metrology Report

Included at No Additional Cost

Newport guarantees specification values which are measured and recorded following ASME B5.57 and ISO 230-2 standards. The typical performance values are two times better than the guaranteed specifications.

Other Features

A rigid top cover prevents damage to the drive train and protects it from dust and debris. ILS Series stages also feature an origin located at the center of travel for repeatable initialization, limit switches to prevent over travel, and elastomeric end-of-run dampers for smooth emergency braking.

Load Characteristics and Stiffness

Cz,	Normal centered load capacity	250 N
$-\mathrm{Cx},+\mathrm{Cx}$,	Axial load capacity	$<40 \mathrm{~N}$
$K \alpha x$,	Compliance in roll	$15 \mu \mathrm{rad} / \mathrm{Nm}$
$K \alpha y$,	Compliance in pitch	$10 \mu \mathrm{rad} / \mathrm{Nm}$
$\mathrm{K} \mathrm{\alpha z}$,	Compliance in yaw	$10 \mu \mathrm{rad} / \mathrm{Nm}$
O,	Off-center load (N)	$0 \leq \mathrm{Cz} \div(1+\mathrm{D} / 60)$
	Where $\mathrm{D}=$ Cantilever distance (mm)	

. mks 1 newoor

Specifications

	ILS-BPP, ILS-CC, ILSCCL (1)	ILS-HA
Travel Range (mm)	50, 100, 150, 200 and 250	
Minimum Incremental Motion ($\mu \mathrm{m}$)	1.0	0.3
Uni-directional Repeatability, Typical (Guaranteed) ($\mu \mathrm{m}$)	1.0	0.4
Bi-directional Repeatability, Typical (Guaranteed) ${ }^{(2)}(\mu \mathrm{m})$		
ILS50	\pm 0.40 ($\pm 1.0)$	$\pm 0.10(\pm 0.35)$
ILS100	$\pm 0.40(\pm 1.0)$	$\pm 0.10(\pm 0.35)$
ILS150	\pm 0.45 ($\pm 1.0)$	$\pm 0.15(\pm 0.35)$
ILS200	\pm 0.45 ($\pm 1.0)$	$\pm 0.15(\pm 0.35)$
ILS250	$\pm 0.60(\pm 1.0)$	$\pm 0.15(\pm 0.35)$
Accuracy CC, BPP \& CCL, Typical (Guaranteed) ${ }^{(2)}(\mu \mathrm{m})$		
ILS50	$\pm 0.6(\pm 1.5)$	$\pm 0.3(\pm 1.25)$
ILS100	$\pm 0.8(\pm 2.0)$	\pm 0.6 ($\pm 1.5)$
ILS150	$\pm 1.5(\pm 2.5)$	$\pm 1.2(\pm 2.0)$
ILS200	$\pm 1.2(\pm 3.7)$	$\pm 0.8(\pm 3.0)$
ILS250	$\pm 1.7(\pm 5.0)$	$\pm 1.5(\pm 3.75)$
Maximum Speed (mm/s)	$\begin{aligned} & \text { ILS-BPP, ILS-CCL: } 50 \\ & \text { ILS-CC: } 100 \end{aligned}$	100
Pitch, Typical (Guaranteed) ${ }^{(2)(3)}$ ($\mu \mathrm{rad}$)		
ILS50	± 15 (± 25)	$\pm 17(\pm 25)$
ILS100	± 20 (± 50)	± 25 (± 50)
ILS150	$\pm 37(\pm 75)$	± 50 (± 75)
ILS200	$\pm 37(\pm 100)$	$\pm 35(\pm 100)$
ILS250	$\pm 42(\pm 125)$	$\pm 45(\pm 125)$
Yaw, Typical (Guaranteed) ${ }^{(2)(3)}$ ($\mu \mathrm{rad}$)		
ILS50	$\pm 12(\pm 25)$	$\pm 7(\pm 25)$
ILS100	$\pm 17(\pm 37)$	$\pm 17(\pm 37)$
ILS150	± 20 (± 65)	± 25 (± 65)
ILS200	± 25 (± 80)	$\pm 25(\pm 80)$
ILS250	± 25 (± 95)	± 30 (± 95)
MTBF (h) 20,000	20,000	

[^0]
Dimensional Drawing

(M-)ILS

MODEL (METRIC)	A	n1	B	C	n2	L2	VERSIONS CC, CCL AND PP		VERSION CCHA	
							L1	L3	L1	L3
(M-)ILS50	-	2	-	5.0 (127)	2	8 (203)	14 (358)	4.8 (123)	15.5 (394)	6.3 (159)
(M-)ILS100	-	2	-	3.0 (76.2)	2	10 (253)	16 (408)	4.8 (123)	17.5 (444)	6.3 (159)
(M-)ILS150	-	2	3.0 (76.2)	3.0 (76.2)	4	12 (303)	18 (458)	4.8 (123)	19.4 (494)	6.3 (159)
(M-)ILS200	3.94 (100)	4	3.0 (76.2)	3.0 (76.2)	4	14 (353)	20 (508)	4.8 (123)	21.4 (544)	6.3 (159)
(M-)ILS250	3.94 (100)	4	3.0 (76.2)	3.0 (76.2)	4	16 (403)	22 (558)	4.8 (123)	23.4 (594)	6.3 (159)

Top Plate

MODEL SHOWN: M-ILS \& M-ILS-LM INTERFACE

Ordering Information

Model	Series	Travel (mm)	Drive	
M-	ILS	$\left[\begin{array}{c} 50 \\ 100 \\ 150 \\ 200 \\ 250 \end{array}\right]$	$-\left[\begin{array}{c} \mathrm{CC} \\ \mathrm{CCL} \\ \mathrm{HA} \\ \mathrm{BPP} \end{array}\right.$	Example: The ILS150HA is an ILS stage with 150 mm travel, a DC motor drive with linear encoder, in English version.

M-: \quad For metric version
CC: DC motor
CCL: DC motor for SMC100CC controller
HA: DC motor with linear encoder
BPP: Stepper motor

Recommended Controllers / Drivers

Model Number	1- to 8-axis universal high-performance motion controller/driver
XPS-Dx	1 Universal digital driver card for stepper, DC and direct motors
XPS-DRV11	1- to 4-axis universal high-performance motion controller/driver
XPS-RLDx	1- to 3-axis motion control- ler/driver
ESP302-xN	Single-axis DC motor controller/driver
SMC100CC	Single-axis stepper motor controller/driver
SMC100PP	

Two IMS stages, one ILS stage, and one EQ120bracket in an XYZ configuration.

Accessory Bracket Dimensional Drawing: EQ120

An RVS80 mounted in a vertical configuration with an EQ120 bracket to an ILS stage.

quarters

© ${ }^{\circ}$. ${ }^{\prime}$ | Newport

www.newport.com

DS-092001 (10/20)
© 2020 MKS Instruments, Inc.
Specifications are subject to change without notice.

MKS products provided subject to the US Export Regulations. Diversion or transfer contrary to US law is prohibited. mksinst ${ }^{\text {TM }}$ is a trademark of MKS Instruments, Inc., Andover, MA. Swagelok ${ }^{\circledR}$ and VCR ${ }^{\circledR}$ are registered trademarks of Swagelok Marketing Co., Solon, OH. Viton ${ }^{\circledR}$ is a registered trademark of E.I. Dupont, Wilmington, DE.

[^0]: 1) ILS-CCL used with the SMC100CC controller only.
 2) Shown are peak to peak, guaranteed specifications or \pm half the value as sometimes shown. For the definition of typical specifications which are about $2 X$ better than the guaranteed values, visit www.newport.com for the Motion Control Metrology Primer.
 3) To obtain arcsec units, divide μ rad value by 4.8.
