6-Axis-ParalleI Kinematic Positioning Systems

The HXP50 hexapod is a parallel kinematic motion device that provides six degrees of freedom: X, Y, Z, pitch, roll, and yaw. Hexapods are effective solutions for complex motion applications that demand high load capacity and accuracy in up to six independent axes. Newport's Hexapods are not only affordable but extremely easy to use.

The HXP50 is driven by six DC servo motor driven actuators with encoder feedback at the leadscrew nut, providing precise MIM, low backlash and fast speed. To enhance the stiffness of the hexapod, our engineers came up with innovative spherical joints that are not only simple but compact and rigid.

To further ensure positioning performance, the High Accuracy (HA) HXP50HA-MECA is available with guaranteed accuracy values. This enables the use of a Newport Hexapod in positioning applications, where position accuracy is required. In addition to accuracy along an axis, the Pitch and Yaw deviations during axial motion are also monitored and guaranteed. When the HA Hexapod is used with Rightpath ${ }^{\top M}$, this combination achieves positioning performance close to standard Newport stages.

Features

- Integrated 6-axis positioner
- Light, compact and low-profile
- No moving cables
- High stiffness (particular in z)
- No accumulation of motion errors
- Virtual center of rotation, set by software
- RightPath ${ }^{\text {tw }}$ trajectory control

The HXP50-ELEC-D and HXP50HA-ELEC-D controllers accurately masters the synchronized transformations from Cartesian input coordinates to the motion of the Hexapod legs. In addition, the HXP50-ELEC-D and HXP50HA-ELEC-D provide advanced features including instrument grade I/O's, hardware based input triggers, event triggers, high-speed on-the-fly data acquisition, fast TCP/IP communication, and integrated TCL programming language for on-board processes. All these features improve accuracy and throughput, making the programmer's life much easier.

- Optics and satellite assembly and testing
- Alignment (camera to sensor, waveguides)
- Biotechnology, surgery
- X-Ray diffraction
- Micromachining, micro-manipulation

What distinguishes of the HXP50, as with the other Newport hexapods, is the ability to program two pivot points represented by the Tool and Work coordinate systems. The Tool CS moves with the top plate and the Work is stationary. Imagine a machine tool where one can adjust the orientation of both the cutting tool and workpiece or in photonics, the optical beam and the
sample. Incremental displacements are possible in either one in user-friendly Cartesian coordinates, and positions can be easily switched from one system to the other by a function call or by numerical input in the HXP's web site interface. These powerful functions are a completely new way of mastering Hexapod motions without the need for complex external coordinate transformations. dinate system Incremental moves can be done in the tool or in the work coordinate systems.

Specifications

	HXP50-MECA	HXP50HA-MECA	HXP50V6-MECA
Travel Range $\mathrm{X}, \mathrm{Y}, \mathrm{Z}^{(1)}$	$\pm 17, \pm 15, \pm 7 \mathrm{~mm}$	$\pm 17, \pm 15, \pm 7 \mathrm{~mm}$	$\pm 17, \pm 15, \pm 7 \mathrm{~mm}$
Travel Range $\Theta X, \Theta Y, \Theta Z$	$\pm 9, \pm 8.5, \pm 18^{\circ}$	$\pm 9, \pm 8.5, \pm 18^{\circ}$	$\pm 9, \pm 8.5, \pm 18^{\circ}$
Minimum Incremental Motion $X, Y, Z^{(2)}$	0.10, $0.10,0.05 \mu \mathrm{~m}$	0.10, 0.10, $0.05 \mu \mathrm{~m}$	0.2, 0.2, $0.1 \mu \mathrm{~m}$
Minimum Incremental Motion $\Theta X, \Theta Y, \Theta Z$	$0.05,0.05,0.10 \mathrm{mdeg}$	$0.05,0.05,0.10 \mathrm{mdeg}$	0.1, $0.1,0.2 \mathrm{mdeg}$
Uni-directional Repeatability $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, Typical	$\pm 0.10, \pm 0.10, \pm 0.05 \mu \mathrm{~m}$	$\pm 0.10, \pm 0.10, \pm 0.05 \mu \mathrm{~m}$	$\pm 0.20, \pm 0.20, \pm 0.20 \mu \mathrm{~m}$
Uni-directional Repeatability $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, Guaranteed	-	$\pm 0.15, \pm 0.15, \pm 0.075 \mu \mathrm{~m}$	-
Uni-directional Repeatability $\Theta X, \Theta Y, \Theta Z$, Typical	$\pm 0.05, \pm 0.05, \pm 0.10 \mathrm{mdeg}$	$\pm 0.05, \pm 0.05, \pm 0.10 \mathrm{mdeg}$	$\pm 0.40, \pm 0.40, \pm 0.20 \mathrm{mdeg}$
Accuracy XYZ, Guaranteed	-	$\pm 5.0, \pm 5.0, \pm 2.5 \mu \mathrm{~m}$	-
Maximum Speed $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	14, $12,5 \mathrm{~mm} / \mathrm{s}$	$14,12,5 \mathrm{~mm} / \mathrm{s}$	2, 1.9, $0.8 \mathrm{~mm} / \mathrm{s}$
Maximum Speed $\Theta X, \Theta Y, \Theta Z$	6, 6, 15 \%	6, 6, 15 \%	2.4, $2.4,6 \%$ s
Rigidity $\mathrm{X}, \mathrm{Y}, \mathrm{Z}^{(3)}$	2, 2, $25 \mathrm{~N} / \mu \mathrm{m}$	2, 2, $25 \mathrm{~N} / \mu \mathrm{m}$	2, 2, $25 \mathrm{~N} / \mu \mathrm{m}$
Pitch X, Y, Z, Guaranteed	-	$\pm 50, \pm 50, \pm 25 \mu \mathrm{rad}$	-
Yaw X, Y, Z, Guaranteed	-	$\pm 50, \pm 50, \pm 25 \mu \mathrm{rad}$	-
Centered Load Capacity (4)	50 N	50 N	50 N
Cable Length	3 m	3 m	1.5 m
Motor	DC Servo	DC Servo	Stepper motor
Weight	2.2 kg	2.2 kg	2.2 kg

[^0]
. 8 mks 1 nowort

Max. Cantilever Distance of the Load

Horizontal Base Plate

Vertical Base Plate

Horizontal Base Plate

Lateral Force

Base Plate Upside-Down

Base Plate of Position

Dimensional Drawings

Onk | Newport'"
 www.newport.com

DS-102101HXP50 Datasheet 10/21
©2021 MKS Instruments, Inc.
Specifications are subject to change without notice.

[^0]: ${ }^{1)}$ Travel ranges are interdependent. The listed values aremax. travels per axis when all other axis are in their centered position.
 ${ }^{2)}$ Open loop values shown.
 ${ }^{3)}$ Stiffness depends on Hexapod position. Values are given for all axis in their centered position.
 ${ }^{4}$) For Value shown for horizontal base plate. See graphs for maximum payload height and cantilever distance on next page

